
IEE Proceedings: Computers and Digital Techniques, 144(5):279-284, September 1997.

Inversion of Cellular Automata Iterations

C� . K. Ko�c �

Electrical and Computer Engineering

Oregon State University, ECE 220

Corvallis, Oregon 97331, USA

A. M. Apohan

TUBITAK MAM Research Centre

Department of Electronics, PK 21

Gebze, Kocaeli 41470, TURKEY

Abstract

We describe an algorithm for inverting an iteration of the one-dimensional cellular automaton.
The algorithm is based on the linear approximation of the updating function, and requires less than
exponential time for particular classes of updating functions and seed values. For example, an n-cell
cellular automaton based on the updating function CA30 can be inverted in O(n) time for certain
seed values, and at most 2n=2 trials are required for arbitrary seed values. The inversion algorithm
requires at most 2(q�1)(1��)n trials for arbitrary nonlinear functions and seed values, where q is the
number of variables of the updating function, and � is the probability of agreement between the
function and its best a�ne approximation. The inversion algorithm coupled with the method of
Meier and Sta�elbach [6] becomes a powerful tool to cryptanalyze the random number generators
based on one-dimensional cellular automata, showing that these random number generators provide
less amount of security than their state size would imply.

Key Words: Random number generation, best a�ne approximation, cryptanalysis.

1 Introduction

A one-dimensional cellular automaton consists of a linearly connected array of n cells, each of which
takes the value of 0 or 1, and a boolean function f(x) with q variables. The value of the cell xi
is updated in parallel (synchronously) using this function in discrete time steps as x0i = f(x) for
i = 1; 2; : : : ; n. The boundary conditions are usually handled by taking the index values modulo n,
i.e., the linearly connected array is actually a circular register. A feedback shift register model of
the one-dimensional cellular automata is also known [3]. The parameter q is usually an odd integer,
i.e., q = 2r + 1, where r is often named the radius of the function f(x); the new value of the ith
cell is calculated using the value of the ith cell itself and the values of r neighboring cells to the
right and left of the ith cell. The cellular automaton for q = 3 is illustrated in Figure 1.

Figure 1: The one-dimensional cellular automaton with q = 3.

xi�1 xi xi+1 � � � Sk� � �

???

f(x)

?

x0i
� � � Sk+1� � �

�Supported in part by the NSF under grant ECS{9312240 and by Intel Corporation.

1



IEE Proceedings: Computers and Digital Techniques, 144(5):279-284, September 1997.

Since there are n cells, each of which takes the values of 0 or 1, there are 2n possible state vectors.
Let Sk denote the state vector at the automaton moves to the states S1; S2; S3, etc., at time steps
k = 1; 2; 3, etc. The state vector Sk takes values from the set of n-bit binary vectors as k advances,
and the state machine will eventually cycle, i.e., it will reach a state Sk+P which was visited earlier
Sk = Sk+P . The period P is a function of the initial state, the updating function, and the number
of cells.

Cellular automata are generally considered as discrete dynamical systems, or discrete approxi-
mations to partial di�erential equations modeling a variety of natural systems. We refer the reader
to [11] and the references therein for further information about the properties, dynamics, and
applications of cellular automata.

A random sequence generator based on the one-dimensional cellular automaton with q = 3 and
the so-called CA30 updating function

f(xi�1; xi; xi+1) = xi�1 XOR (xi OR xi+1) (1)

was proposed by Wolfram in [9]. The state vectors produced by this cellular automaton seem to
have randomness properties, e.g., the time sequence values of the central cell shows no statistical
regularities under the usual randomness tests [5]. In order to use such a generator for cryptographic
purposes, we must also ensure that the seed value (the initial state vector S0) is di�cult to construct
given a sequence of state vectors. It was stated in [9] that

This problem is in the class NP. No systematic algorithm for its solution is currently
known that takes a time less than exponential in n.

We show in this paper that the number of trials may be much fewer than 2n for particular classes
of updating functions and seed values. We give an algorithm for computing Sk given Sk+1, whose
running time depends on the linearity of the updating function f(x). If f(x) is a q-variable a�ne
function, then the running time of the algorithm is only O(nq2). Furthermore, the running time
of the inversion algorithm may still be O(nq2) for a nonlinear updating function with certain seed
values. In general, the inversion algorithm requires much fewer than 2n trials for nonlinear updating
functions and arbitrary seed values. For example, the number of trials required to invert the cellular
automaton based on the updating function CA30 is at most 2n=2 for an arbitrary seed value.

It has also been shown by Meier and Sta�elbach that the sequence of the central bits of the
states, which is named as the temporal sequence, can be used to determine the seed using the
partial linearity of the CA30 updating function [6]. Given the temporal sequence, their method
successfully �nds the seed vector when its size is up to 500 bits. The inversion algorithm di�ers
from the method of Meier and Sta�elbach in the sense that it computes the predecessor of a given
state vector. However, the method of Meier and Sta�elbach can be coupled with the inversion
algorithm: First we compute a state vector given the central bit values using their method. Then
we use the inversion algorithm to compute the predecessors of this state. Thus, we can map the
entire evolution of the state machine which generates the random numbers. The method of Meier
and Sta�elbach coupled with the inversion algorithm becomes a powerful tool to cryptanalyze the
random number generators based on one-dimensional cellular automata. This shows that these
random number generators provide less amount of security than their state size would imply; they
are unsuitable for cryptographic purposes when n is small.

2 Description of the Inversion Algorithm

The proposed inversion algorithm is based on the best a�ne approximation of the q-variable up-
dating function f(x). Using tools from the spectral analysis of boolean functions [1, 2, 7], we

2



IEE Proceedings: Computers and Digital Techniques, 144(5):279-284, September 1997.

construct a q-variable linear function g(x) which is the best a�ne approximation to f(x). In other
words, g(x) has the minimum Hamming distance to f(x) among all linear functions. The Hamming
distance between two functions is de�ned as the Hamming distance between the binary vectors of
length 2q produced by the application of all possible input values x 2 Zq

2 to these functions.
The main idea of the inversion algorithm is illustrated in Figure 2. The state vector Sk+1 is

computed by applying the function f(x) to the state vector Sk. We calculate an approximation to
Sk by �nding a vector S�k which maps to Sk+1 under the linear function g(x). The vector S�k is
computed by solving a set of linear equations whose matrix is determined by the parameters of the
linear function g(x). We then apply f(x) to S�k and calculate S�k+1 which is an approximation to
the state vector Sk+1. Since Sk+1 is known, we compare Sk+1 and S�k+1, and make corrections to
the state vector S�k until we obtain the state vector S�k which results in the equality S�k+1 = Sk+1.
The inversion algorithm calculates one of the predecessors of the state vector Sk+1. Repeated
application of the inversion with di�erent g(x), whenever applicable, may yield other predecessors.

Figure 2: The main idea of the inversion algorithm.

Sk

?

Sk+1

�
�

�
�
��+

S�k

?

S�k+1

f(x) f(x)g(x)

We are assuming that the n-dimensional binary vector Sk+1 and the q-variable updating function
f(x) are given. Our objective is to devise an algorithm for computing Sk as shown in Figure 2.
The details of the inversion algorithm are described below.

The Inversion Algorithm

Input: The n-dimensional vector Sk+1 and the q-variable updating function f(x).

Output: The n-dimensional vector Sk.

1. Obtain the best a�ne approximation g(x) to the updating function f(x), and determine �
which is the probability of agreement between f(x) and g(x).

The q-variable function f(x) may be given in algebraic form, however, we only need its values
at 2q points in order to construct its best a�ne approximation. The best a�ne approximation
of f(x) is the function

g(x) = w1x1 �w2x2 � � � � � wqxq � c , (2)

where wi 2 Z2 for i = 1; 2; : : : ; q, and c 2 Z2, such that the summation
X
x2Z

q

2

f(x)� g(x) (3)

achieves its minimal value [7, 2]. The function g(x) is determined by calculating the vector
w = (w1; w2; : : : ; wq) and the constant c, which can be computed by exhaustive search.
However, there is an e�cient method for constructing g(x) based on the Walsh transform
[1, 2, 7, 8]. The functions f(x) and g(x) will agree at a portion of 2q points. Let A be the
number of points at which f(x) = g(x). Note that A � 2q=2, since, otherwise, f(x) will
agree with g(x) � 1 (the complement of g(x)) in more than 2q=2 points, and thus, we can
take g(x) � 1 as the best a�ne approximation. The probability of agreement between f(x)
and g(x) is de�ned as � = A=2q. In general, we have � � 1

2 . If f(x) is linear, then � = 1.

3



IEE Proceedings: Computers and Digital Techniques, 144(5):279-284, September 1997.

2. Obtain the state vector S�k using the a�ne function g(x), and by solving a set of linear
equations of dimension n in GF (2).

Let S�k = (x1; x2; : : : ; xn) and Sk+1 = (y1; y2; : : : ; yn). The state vector Sk+1 is obtained by
applying the function g(x) to the state vector S�k. Instead of computing the inverse of the
function g(x), we solve a set of linear equations of dimension n in the �eld GF (2) involving
the known quantities yi in order to compute the unknown quantities xi for i = 1; 2; : : : ; n. The
matrix of the linear system of equations is a band matrix with a bandwidth of q. For example,
the linear system of equations of dimension n = 8 for the 3-variable (q = 3) approximating
a�ne function

g(x1; x2; x3) = w1x1 � w2x2 � w3x3 � c (4)

is given as

2
6666666666664

w2 w3 w1

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w3 w1 w2

3
7777777777775

2
6666666666664

x1
x2
x3
x4
x5
x6
x7
x8

3
7777777777775

+

2
6666666666664

c
c
c
c
c
c
c
c

3
7777777777775

=

2
6666666666664

y1
y2
y3
y4
y5
y6
y7
y8

3
7777777777775

. (5)

3. Apply the function f(x) to the state vector S�k to obtain the state vector S�k+1, as shown in
Figure 2.

4. If Sk+1 = S�k+1, then stop. The algorithm found a predecessor to the state vector Sk+1.
If Sk+1 6= S�k+1, then apply `corrections' to the state vector S�k which gives the equality
Sk+1 = S�k+1. The correction heuristics are in Steps 5 through 12.

5. Compare Sk+1 and S�k+1, and mark all single bits which are di�erent.

6. Let xj and x�j be two bit values in Sk+1 and S�k+1, respectively. We have either x�j = xj or
x�j = �xj . If the latter is true, we can obtain the correct bit value by complementing, which
requires that the inputs to the function f(x) giving the value of x�j need to be changed. We
examine the truth table of the function f(x), and make a template consisting of all possible
input values which produce the complemented output. There are two kinds of templates for
every incorrect bit: we either have to make a change from 0 to 1, or from 1 to 0.

7. Construct as many templates as the number of incorrect bits in the state vector S�k+1. In other
words, the number of templates is equal to the Hamming distance between Sk+1 and S�k+1,
i.e., H(Sk+1; S

�
k+1). The length of a template is equal to the number of 1s in the function

f(x) if the change is to be made from 0 to 1. Similarly, if the change is to be made from 1 to
0, the length of the template will be equal to the number of 0s in f(x).

8. Group the templates in such a way that each group contains neighboring templates. Two
templates are considered neighbors if the di�erence of their indices is strictly less than q. For
example, if q = 3 and the indices of incorrect bits are 6, 7, 8, 11, 13, then the templates
corresponding to 6, 7, 8 are placed in one group, while the templates corresponding to 11, 13
are placed in another group.

4



IEE Proceedings: Computers and Digital Techniques, 144(5):279-284, September 1997.

9. Each group is then represented by a single reduced template which enumerates all possible
input values producing the correct bits within the group. This operation is performed by
examining the templates, and removing the conicts. The objective is to �nd input con�gu-
rations which correct all bits in the group at the same time. An input con�guration which
corrects one bit while destroying one ore more bits is considered a conict, and is removed
from the set. This removal reduces the number of rows in each template.

10. After each group is represented by a single template, we remove any rows within the template,
which destroy the bit values outside the group. The input values correcting the bit values
within a group should not be allowed to corrupt any bits which have not been placed in a
group because they were correct to begin with.

11. The remaining templates give all possible bit con�gurations giving the correct state vector
S�k . We place these bit con�gurations in S�k one by one, apply the function f(x), and check if
S�k+1 = Sk+1. If there is a bit con�guration which produces this equality, then we have found
a predecessor to the state Sk+1.

12. If none of these bit con�gurations produces the correct state vector, then we conclude that
certain bits which have not been placed in the templates need to be changed. We exhaustively
enumerate all bit values outside the templates together with the bit values in the reduced
templates in order to calculate the correct state vector S�k.

3 Analysis of the Inversion Algorithm

Given the n-dimensional binary vector Sk+1 and the updating function f(x), we can try all possible
n-dimensional binary vectors to �nd the one which gives the state vector Sk+1. Since there are
2n binary vectors of length n, the number of trials required by the exhaustive search algorithm is
equal to 2n in the worst case. The running time of the inversion algorithm is to be contrasted to
that of the exhaustive search algorithm.

The construction of the best a�ne approximation of the updating function f(x) is performed
using the Walsh transform. The running time of this operation is a function of q, the number of
variables in the function f(x). Since q is usually very small compared to n, we ignore the time
required to calculate all g(x) functions which are the best a�ne approximations to f(x).

In Step 2, we select one of these a�ne functions, and solve a linear system of equations of
dimension n in the �eldGF (2). This requires implementation of GF (2) arithmetic and the Gaussian
elimination algorithm. As was mentioned, the matrix of these linear equations is band matrix with
a bandwith of q. It is known [4] that the Gaussian elimination algorithm requires O(nq2) arithmetic
operations to solve a linear system of equations with size n and bandwith q. If f(x) happens to
be a linear function, the inversion algorithm will be successful in Step 4 since in this case f(x) will
be equal to g(x) at all points, and the application of f(x) to the state vector S�k will produce S�k+1

which will be equal to Sk+1.
Even if f(x) is not linear, the algorithm may still be successful in Step 4 for certain seed values.

This is due to the fact that the nonlinear function f(x) and the linear function g(x) agree at �2q

points; these two functions are indistinguishable from one another if these q-tuples are used as
inputs. If Sk consists of those q-tuples at which f(x) = g(x), then the application of f(x) to
Sk, and g(x) to S�k will result in the equality Sk+1 = S�k+1. Thus, we will obtain the solution
immediately after solving the set of linear equation. We refer the reader to Example 1 to clarify
our arguments on this issue.

5



IEE Proceedings: Computers and Digital Techniques, 144(5):279-284, September 1997.

If Sk+1 is di�erent from S�k+1, we apply the correction steps (5 through 12). We construct
as many templates as the number of bits which di�er in state vectors Sk+1 and S�k+1. Let p be
the Hamming distance between Sk+1 and S�k+1, i.e., we construct exactly p templates. Now, we
need to make changes in S�k in order to �nd the correct S�k+1. We will also assume that f(x) is a
nearly balanced function, i.e., the number of 1s is nearly equal to the number of 0s. Since f(x) is
a q-variable function, the length (the number of rows) of a template is approximately 2q=2 = 2q�1.
The number of rows in a template is the number of possible inputs (q-tuples) to substitute in S�k
in order to have the output bit complemented in the state vector S�k+1. The trial substitutions are
performed to complement all incorrect bits in S�k+1 so that S

�
k+1 will be equal to Sk+1. Since there

are p incorrect bits and 2q�1 possible replacements for each one of them, the maximum number of
trials will be

2q�1 � 2q�1 � � � � 2q�1| {z }
p

= 2(q�1)p . (6)

Let f(S�k) represent the state vector obtained by applying the function f(x) to the state vector S�k .
As can be seen from Figure 2, we have

p = H(Sk+1; S
�
k+1) = H(g(S�k); f(S

�
k)) . (7)

If n is su�ciently large and S�k is random, then the Hamming distance between the state vectors
g(S�k) and f(S�k) will be approximately equal to (1 � �)n where 1 � � is the probability of dis-
agreement between the functions f(x) and g(x). If all possible 2q bit vectors of length q occur
equally likely in Sk, Sk+1, and S�k, then it is safe to say that the Hamming distance between the
vectors g(S�k) and f(S�k) will be very close to (1 � �)n. In cryptographic applications, one usually
starts with random seed values, otherwise they can easily be guessed. Furthermore, n needs to be
large since the exhaustive search algorithm can be successfully applied to cryptanalyze the random
number generator for small values of n. Thus, both of our assumptions seem reasonable. Therefore,
we calculate the expected number of incorrect bits as

p = H(g(S�k); f(S
�
k)) = (1� �)n . (8)

This gives the number of trials to compute Sk as

2(q�1)p = 2(q�1)(1��)n . (9)

However, we note that since we work with reduced templates based on the neighborhood principle,
and the number of templates and the average number of rows in each template is expected to be
much fewer than (1��)n and 2q�1, respectively. The number of trials given by the above equation
is indeed a loose upper bound.

Unfortunately, the algorithm may still not be successful at the end of Step 11, i.e., none of
the tried bit vectors may produce the correct state vector. This implies that bit values other
than those placed in the templates need to be changed. Since for each incorrect bit in S�k+1, we
replace approximately q bits in S�k , the number of untouched bits is approximately equal to n� pq.
We exhaustively try each one of these 2n�pq possible inputs with the input rows in the reduced
templates. We may have to perform as many trials as

2n�pq � 2(q�1)p = 2n�p = 2n�(1��)n = 2�n , (10)

if Step 12 is to be executed. The above value is an upper bound on the expected number of trials
since at this stage we use the reduced templates, and not all untouched bits may need to be changed.

6



IEE Proceedings: Computers and Digital Techniques, 144(5):279-284, September 1997.

4 Examples

In this section, we give several examples illustrating the application of the inversion algorithm to
the cellular automaton based on the updating function CA30. These examples are constructed to
describe certain properties of the inversion algorithm.

The �rst step is to construct the best a�ne approximation of the function CA30. As was
mentioned earlier, the best a�ne approximation of a function may not be unique. It turns out
that there are 4 a�ne functions which are the best approximations to the CA30 updating function.
These a�ne functions are

g1(x1; x2; x3) = x1 � 1 ,

g2(x1; x2; x3) = x1 � x2 ,

g3(x1; x2; x3) = x1 � x3 ,

g4(x1; x2; x3) = x1 � x2 � x3 .

Any of these a�ne functions gi(x) matches the function CA30 in A = 6 points out of 8, which
gives � = 6=8 = 0:75. This value of � is the maximum attainable among all a�ne functions. We
tabulate the function CA30 and its best a�ne approximations below:

xi�1 xi xi+1 CA30 g1(x) g2(x) g3(x) g4(x)

0 0 0 0 1 0 0 0
0 0 1 1 1 0 1 1
0 1 0 1 1 1 0 1
0 1 1 1 1 1 1 0
1 0 0 1 0 1 1 1
1 0 1 0 0 1 0 0
1 1 0 0 0 0 1 0
1 1 1 0 0 0 0 1

If the inversion algorithm is successful in Step 4, it will require O(n) arithmetic operations since a
linear system of equations with band q = 3 is solved. If the inversion algorithm executes until Step
11, it will require at most 2(q�1)(1��)n = 2n=2 trials. If it also executes Step 12, then the number
of trials will be at most 2�n = 23n=4.

4.1 Example 1

Let n = 11 and Sk = 01001000010, which gives Sk+1 = 11111100111 under the updating function
CA30. Now, assuming that Sk is unknown and Sk+1 is given, we can calculate Sk using the proposed
inversion algorithm. First we select the a�ne function g4(x), and then solve a set of linear equations
of dimension 11 in order to compute S�k as explained in Step 2. The state vector obtained from this
step is found as S�k = 01001000010. We then apply the updating function CA30 to S�k to obtain
S�k+1, which is found as S�k+1 = 11111100111.

1 2 3 4 5 6 7 8 9 A B 1 2 3 4 5 6 7 8 9 A B
Sk 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 S�k

Sk+1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 S�k+1

Since Sk+1 = S�k+1, we conclude that the algorithm successfully found the solution vector Sk at
the end of Step 4. Even though the updating function f(x) is not linear, we have found a solution
immediately after solving a set of linear equations. As was explained in Section 3, this will happen

7



IEE Proceedings: Computers and Digital Techniques, 144(5):279-284, September 1997.

when the seed vector (Sk) entirely consists of those q-tuples at which f(x) and its best a�ne
approximation g(x) agree. We inspect the above table and notice that f(x) and g4(x) are equal at
the following set of 3-tuples: R1 = f000; 001; 010; 100; 101; 110g. On the other hand, the set of all
3-tuples which make up Sk is found as R2 = f000; 001; 010; 100g. Since R2 � R1, the application
of f(x) to Sk will produce the same Sk+1 as the application of g4(x) to Sk.

4.2 Example 2

If there are several predecessors of Sk+1, the proposed inversion algorithm will �nd one of them,
which may not be the original Sk used to obtain Sk+1. For example, let n = 8 and Sk = 11100100
which gives Sk+1 = 10011111 under CA30. After solving the linear equations for the a�ne function
g4(x), we obtain S�k = 00001001. We then apply CA30 to S�k, and calculate S�k+1 = 10011111.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Sk 1 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 S�k

Sk+1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 S�k+1

Since Sk+1 = S�k+1, we conclude that the algorithm has indeed found a predecessor of Sk+1. How-
ever, this predecessor is not the original Sk from which we computed Sk+1. The application of the
other best a�ne approximations of f(x) may yield other predecessors of Sk+1.

4.3 Example 3

In this example, we take n = 11 and Sk = 11001101001 which gives Sk+1 = 00111001111 under the
updating function CA30. We select the a�ne function g1(x), and then solve a set of linear equations,
and calculate Sk� = 10001100001, and �nally apply CA30 to S�k to calculate S�k+1 = 01011010011.

1 2 3 4 5 6 7 8 9 A B 1 2 3 4 5 6 7 8 9 A B
Sk 1 1 0 0 1 1 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1 S�k

Sk+1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 1 1 0 1 0 0 1 1 S�k+1

As can be seen from above the state vector S�k+1 is not equal to Sk+1, and thus we need to execute
Steps 5 through 12 of the inversion algorithm. The state vectors Sk+1 and S

�
k+1 di�er in bit positions

2, 3, 7, 8, and 9. Thus, we construct �ve templates as shown below.

Template 2 Template 3 Template 7 Template 8 Template 9

1 2 3

a 0 0 0
b 1 0 1
c 1 1 0
d 1 1 1

2 3 4

e 0 0 1
f 0 1 0
g 0 1 1
h 1 0 0

6 7 8

i 0 0 0
j 1 0 1
k 1 1 0
l 1 1 1

7 8 9

m 0 0 1
n 0 1 0
o 0 1 1
p 1 0 0

8 9 A

q 0 0 1
r 0 1 0
s 0 1 1
t 1 0 0

There are two groups of templates, based on the neighborhood principle. The �rst group contains
the templates 2 and 3, while the second group consists of the templates 7, 8, 9. We combine the
templates in the �rst group by retaining those rows of the templates which have the same bit values.
For example, the row `a' in the template 2 and the row `e' in the template 3 are combined making
a row corresponding to the bit positions 1, 2, 3, and 4. The reduced templates are given below:

Template 2, 3 Template 7, 8, 9

1 2 3 4

ae 0 0 0 1
bf 1 0 1 0
bg 1 0 1 1
ch 1 1 0 0

6 7 8 9 A

imr 0 0 0 1 0
ims 0 0 0 1 1
jnt 1 0 1 0 0
kpq 1 1 0 0 1

8



IEE Proceedings: Computers and Digital Techniques, 144(5):279-284, September 1997.

We then exhaustively check all rows in the �rst reduced template and keep only those rows which
complement bit values in positions 2 and 3, while not altering the other bits. The only row in
the �rst reduced template is the row `ch'. Similarly, in the second reduced template, the row
`jnt' complements the bit values in positions 7, 8, and 9, while not altering the other bit values.
Therefore, we found the predecessor of the state Sk+1, which is given as

1 2 3 4 5 6 7 8 9 A B

1 1 0 0 1 1 0 1 0 0 1

where the bit values in positions 1, 2, 3, 4 come from the row `ch', the bit values in positions 6, 7,
8, 9, A come from the row `jnt', while the bit values 5 and B are the original values of S�k .

4.4 Example 4

Let n = 11 and Sk = 01101000010 which gives Sk+1 = 11001100111 using the updating function
CA30. In this example, we also select the a�ne function g1(x) and calculate S�k = 01100110000 by
solving a set of linear equations. We then apply CA30 to S�k and compute S�k+1 = 11011101000.

1 2 3 4 5 6 7 8 9 A B 1 2 3 4 5 6 7 8 9 A B
Sk 0 1 1 0 1 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 0 0 S�k

Sk+1 1 1 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 0 1 0 0 0 S�k+1

By inspection we determine that Sk+1 and S�k+1 di�er in bit positions 4, 8, 9, A, and B. Therefore,
the templates are found as

Template 4 Template 8 Template 9 Template A Template B

3 4 5

a 0 0 0
b 1 0 1
c 1 1 0
d 1 1 1

7 8 9

e 0 0 0
f 1 0 1
g 1 1 0
h 1 1 1

8 9 A

i 0 0 1
j 0 1 0
k 0 1 1
l 1 0 1

9 A B

m 0 0 1
n 0 1 0
o 0 1 1
p 1 0 0

A B 1

q 0 0 1
r 0 1 0
s 0 1 1
t 1 0 0

The template 4 is put into the �rst group by itself, while the second group consists of the templates
8, 9, A, and B. The row `b' is the only row in the �rst reduced template, which complements the
4th bit while not altering the other bit values. The reduced templates of these two groups are given
below:

Template 4 Template 8, 9, A, B
3 4 5 7 8 9 A B 1

b 1 0 1 eint 0 0 0 1 0 0
fjpq 1 0 1 0 0 1
glmr 1 1 0 0 1 0
glms 1 1 0 0 1 1

However, when we try each one of these rows in the above reduced templates in S�k , we notice that
the correct S�k+1 is not being produced. We conclude that the bit values outside the templates
may also need to be changed. Thus, we need to execute Step 12 of the inversion algorithm; in the
worst case, all untouched bits (bits 2 and 6) may need to be altered. It turns out that we need to
complement bit 6, and keep bit 2 the same in order to obtain the correct solution vector.

1 2 3 4 5 6 7 8 9 A B

0 1 1 0 1 0 0 0 0 1 0

Here, bits 3, 4, 5 come from the �rst reduced template (row `b'), bits 7, 8, 9, A, B, 1 come from
the second reduced template (row `eint'), and bit 6 is the complement of the original bit 6.

9



IEE Proceedings: Computers and Digital Techniques, 144(5):279-284, September 1997.

5 Further Comments and Conclusions

We note a couple of possible extensions of the inversion algorithm. First, we can use other types
of approximations to f(x) instead of the best a�ne approximation g(x). If the Hamming distance
between Sk+1 and S�k+1 is small, and the resulting system of equations g(S�k) = Sk+1 can be
e�ciently solved, then the extended inversion algorithm will be successful. Our incentive in using
the best a�ne approximation is due to the fact that this system of equations is linear, and thus, can
be solved in O(nq2) time. As an example, a quadratic function g(x) which has a small Hamming
distance to f(x) can be used if the resulting system of quadratic equations can be e�ciently solved.

Another extension of the inversion algorithm is its generalization to several rounds. A t-round
inversion can be accomplished in two di�erent ways: The �rst method performs t inverse iterations
by applying the inversion algorithm t times. In this process, we start with St, and compute
St�1; St�2; : : : ; S0. Another idea is to �nd the best a�ne approximation to the composite function
f � f � � � � � f , where the decomposition operator `�' is applied t times. We then apply the inversion
algorithm using this best a�ne approximation. We start with St, and directly calculate S0 without
computing St�1; St�2; : : : ; S1. For example, for q = 3 and t = 2, we have f(x) = f(xi�1; xi; xi�1),
and

f(x) � f(x) = h(x) = h(xi�2; xi�1; xi; xi+1; xi+2) . (11)

Thus, we start with S2, and directly calculate S0 without computing S1 by using the best a�ne
approximation to the composite function h(x).

As we illustrated in Example 2, the inversion algorithm will calculate a predecessor to the
state vector Sk+1, which may not be the original one. If a state has several predecessors, then the
inversion algorithm may hit any one of them depending on which of the best a�ne approximations
is used. However, it seems that the proportion of states having several predecessors is very small
among all possible state vectors. For example, it has been noted in [9] that only a small fraction of
(�=2)n � 0:85n of states do not have unique predecessors for the CA30 based cellular automaton,
where � is the real root of 4�3 � 2�2 � 1 = 0. Thus, the probability that the inversion algorithm
would give an incorrect seed value gets smaller as n grows.

Finally, we note that the number of trials given as 2(q�1)(1��)n is a loose upper bound. Since
we work with reduced templates by concatenating the initial templates into groups based on the
neighborhood principle, a tight upper bound can be computed by obtaining the average number
of reduced templates and the average number of rows in a reduced template, and then multiplying
these quantities. Another open problem is the proportion of seed values among all possible 2n values,
for which the inversion algorithm computes a predecessor after solving a set of linear equations.

References

[1] K. G. Beauchamp. Walsh Functions and Their Applications. New York, NY: Academic Press,
1975

[2] C. Ding, G. Xiao, and W. Shan. The Stability Theory of Stream Ciphers. New York, NY:
Springer-Verlag, 1991.

[3] S. W. Golomb. Shift Register Sequences. Laguna Hills, CA: Aegean Park Press, 1982.

[4] G. H. Golub and C. F. van Loan. Matrix Computations. 2nd Edition, Baltimore, MD: The
Johns Hopkins University Press, 1989.

[5] D. E. Knuth. The Art of Computer Programming: Seminumerical Algorithms, volume 2. Read-
ing, MA: Addison-Wesley, Second edition, 1981.

10



IEE Proceedings: Computers and Digital Techniques, 144(5):279-284, September 1997.

[6] W. Meier and O. Sta�elbach. Analysis of pseudo random sequences generated by cellular
automata. Advances in Cryptology { Eurocrypt '91, Lecture Notes in Computer Science, No.
547, D. W. Davies, editor, pages 186{199, Springer-Verlag, 1991.

[7] R. A. Rueppel. Analysis and Design of Stream Ciphers. New York, NY: Springer-Verlag, 1986.

[8] R. A. Rueppel. Stream ciphers. In G. J. Simmons, editor, Contemporary Cryptology: The

Science of Information Integrity, pages 65{134. New York, NY: IEEE Press, 1992.

[9] S. Wolfram. Cryptography with cellular automata. In H. C. Williams, editor, Advances in

Cryptology | CRYPTO 85, Proceedings, Lecture Notes in Computer Science, No. 218, pages
429{432. New York, NY: Springer-Verlag, 1985.

[10] S. Wolfram. Random sequence generation by cellular automata. Advances in Applied Mathe-

matics, 7:123{169, June 1986.

[11] S. Wolfram. Cellular Automata and Complexity. Reading, MA: Addison-Wesley, 1994.

11


