
Parallel Algorithms and Applications, 11(1-2):61-69, 1997.

A Parallelization of Parlett's Algorithm

for Functions of Triangular Matrices �

B. Bakkalo�glu, K. Erciye�sy, and C� . K. Ko�c

Department of Electrical and Computer Engineering

Oregon State University

Corvallis, Oregon 97331

Abstract

We present a parallelization of Parlett's algorithm for computing arbitrary functions of upper
triangular matrices. The parallel algorithm preserves the numerical stability properties of the serial
algorithm, and is suitable for implementation on coarse-grain parallel computers. Our experiments
on a 16-processor Meiko CS-2 multiprocessor indicate that the algorithm obtains nearly constant
e�ciency (linear speedup) for small number of processors and for matrices of size greater than 500.

1 Computing Matrix Functions

Computing functions of square matrices is an important topic in linear algebra, engineering, and
applied mathematics. There are several methods for this task: Jordan decomposition, Schur decom-
position, and approximation methods, e.g., Taylor expansion and rational Pad�e approximations.
The approximation methods may not be suitable for arbitrary functions, since speci�c properties of
the function are exploited. The Jordan and Schur decomposition methods are more general in the
sense that an arbitrary function of a given square matrix can be computed using these algorithms.
Let A be an n�n matrix with entries from the real or complex �eld, and f(�) be the function. The
Jordan decomposition algorithm is used to obtain A =MJM�1, and then f(A) is computed using
the formula f(A) =Mf(J)M�1. However, there are some computational di�culties with the Jor-
dan decomposition approach, unless A can be diagonalized and has well-conditioned eigenvectors
[3]. The Schur decomposition, on the other hand, is more stable, and can be used for computing
arbitrary functions of matrices. Let A = QTQH be the Schur decomposition of the full matrix A,
then f(A) = Qf(T )QH , where T is an upper triangular matrix. This way the computation of f(A)
for an arbitrary matrix A is reduced to the computation of f(T ) for an upper triangular matrix T .

Let F = f(T ), and fij and tij be the elements in the ith row and jth columns of the upper
triangular matrices F and T , respectively. One approach in computing the entries fij is to obtain
explicit expressions for each fij in terms of tij for all possible values of i and j. However, these
expressions become very complicated as we move away from the main diagonal, and do not allow
cost-e�ective computation of the entries of F . Let �i = tii. It is shown in [2, 3] that fii = f(�i) for
1 � i � n and fij = 0 for 1 � j < i � n. Furthermore, for all 1 � i < j � n, we have

fij =
X

(s0;:::;sk)2Sij

ts0;s1ts1;s2 � � � tsk�1;skf [�s0 ; : : : ; �sk ] ,

�This work is supported in part by the National Science Foundation under grant ECS{9312240 and CDA{9216172.
yOn leave from Ege University, Izmir, Turkey.

1



Parallel Algorithms and Applications, 11(1-2):61-69, 1997.

where Sij is the set of distinct sequences of integers such that i = s0 < s1 < � � � < sk = j; 1 � k �
j � i, and f [�s0 ; : : : ; �sk ] is the kth order divided di�erence of f at f�s0 ; : : : ; �skg. Computing the
upper triangular matrix function F = f(T ) using this method requires O(2n) arithmetic operations,
which is computationally infeasible even for matrices of moderate size.

2 Parlett's Algorithm

A fast algorithm for computing F = f(T ) was proposed by Parlett [5]. This method is derived from
the commutativity property FT = TF . Parlett shows that by expanding the matrix multiplication
and solving for fij in the above, we obtain the summation formula

fij = tij
fjj � fii
tjj � tii

+
1

tjj � tii

j�1X
k=i+1

(tikfkj � fiktkj) , (1)

which requires that tii 6= tjj for all i 6= j. Parlett's algorithm starts with computing the main
diagonal entries of F . Since the main diagonal entries tii are the eigenvalues of T , fii is calculated
by applying f to each tii, i.e., fii = f(tii). After computing the main diagonal entries, the algorithm
computes the superdiagonals one at a time, using the summation expression (1). Parlett's algorithm
is given in Figure 1.

Figure 1: Parlett's algorithm.

for i = 1 to n
fii = f(tii)

end

for L = 1 to n� 1
for i = 1 to n� L
j = i+ L
s = tij(fjj � fii)
for k = i+ 1 to j � 1
s = s+ tikfkj � fiktkj

end

fij = s=(tjj � tii)
end

end

Note that the number of terms in the summation becomes larger as the algorithm proceeds over
the superdiagonals. As an example, the expressions for f3j for j = 3; 4; 5; 6 are given below:

f33 = f(t33) ,

f34 = t34
f44 � f33
t44 � t33

,

f35 = t35
f55 � f33
t55 � t33

+
t34f45 � f34t45

t55 � t33
,

f36 = t36
f66 � f33
t66 � t33

+
(t34f46 � f34t46) + (t35f56 � f35t56)

t66 � t33
.

2



Parallel Algorithms and Applications, 11(1-2):61-69, 1997.

The number of arithmetic operations required to compute an element of the Lth superdiagonal is
easily calculated as 4L. For example f36 belongs to the 3rd superdiagonal, and 4�3 = 12 arithmetic
operations (4 subtractions, 2 additions, 5 multiplications, 1 division) are needed to compute f36.
Furthermore, any element of a superdiagonal is computed using the elements of F and T to the
left of and beneath this element, as illustrated in Figure 2 for computing f36.

Figure 2: Data dependency to compute f36.

f11 f12 f13 f14 f15 f16 f17 f18
f22 f23 f24 f25 f26 f27 f28

f33 f34 f35 f36 f37 f38
f44 f45 f46 f47 f48

f55 f56 f57 f58
f66 f67 f68

f77 f78
f88

Parlett's algorithm performs n function evaluations to obtain the main diagonal entries of F . After
the elements in the main diagonal are obtained, the summation formula (1) is used to compute the
(n�L) elements in the Lth superdiagonal, each of which requires 4L arithmetic operations. Thus,
assuming a single scalar function evaluation requires K arithmetic operations, Parlett's algorithm
requires a total of

T = Kn+
n�1X
L=1

(n� L)(4L) = Kn+
2

3
(n3 � n) .

arithmetic operations to compute all elements of the upper triangular matrix F . However, we
must remark that if T has close eigenvalues, this algorithm will give inaccurate results. Alternative
methods for dealing with the repeated eigenvalue case can be found in [5, 3].

3 Parallelization of Parlett's Algorithm

Parlett's algorithm �rst computes the main diagonal elements of the matrix F by performing n
independent scalar function evaluations. Provided that we have n processors available, this step
requires only K parallel arithmetic operations. We can then obtain the remaining elements of the
upper triangular matrix by computing each super diagonal in parallel. This parallelization does not
destroy the order in which the elements are computed in the serial algorithm, and thus, the parallel
algorithm we propose has the same error propagation and numerical stability characteristics as the
serial algorithm.

The parallel algorithm has n phases; a superdiagonal vector is computed at each phase using
all the available processors. The number of processors p is assumed to be less than or equal to the
matrix size n. Note that as we proceed away from the main diagonal, the length of the superdiagonal
vector decreases and the number of arithmetic operations required per element increases. Thus,
we perform an approximately equal amount of work at each phase, i.e., the parallel algorithm is
well-balanced. In order to achieve a low communication penalty we distribute the upper triangular
matrices F and T to all processors. This provides access to all elements of F and T by all processors
at the beginning. In order to maintain this property, we broadcast the computed superdiagonal at
the end of each phase. The processors then update their copy of the F matrix, and thus, have the
fresh elements at the beginning of every phase.

3



Parallel Algorithms and Applications, 11(1-2):61-69, 1997.

Figure 3: The parallel algorithm.

broadcast the matrices T and F
for all i that processor P owns
fii = f(tii)

end

broadcast the main diagonal of F
for L = 1 to n� 1
for all i that processor P owns
j = i+ L
s = tij(fjj � fii)
for k = i+ 1 to j � 1
s = s+ tikfkj � fiktkj

end

fij = s=(tjj � tii)
end

broadcast the Lth superdiagonal of F
end

As illustrated in Figure 2, in order to compute the element fij, we need to have access to fik for
k = i; i+1; : : : ; j�1 and fkj for k = i+1; : : : ; j. Since the data dependency pattern becomes more
complex and the length of the summation terms increases from phase to phase, the distribution
of all elements of the matrices F and T to all processors seems justi�ed. With this distribution,
we achieve low communication penalty. Furthermore, the work distribution of the processors is
easily handled. At each phase, each processor simply picks a starting and ending index in the
superdiagonal to be computed during this phase. This processor is then responsible for computing
the elements in this range. We must note that, with this partitioning technique, we may not be
able to �t very large matrices to the memory available in each processor. However, the resulting
parallel algorithm is e�cient, and matrices of dimension up to two thousand (with double-precision
oating-point entries) can be dealt with using 16 MB of memory per processor.

Figure 4: The distribution of the elements for n = 16 and p = 4.

Phases of the algorithm
P 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 1,10 1,11 1,12 1,13 1,14 1,15 1,16

2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 2,10 2,11 2,12 2,13
3,3 3,4 3,5 3,6 3,7 3,8 3,9 3,10
4,4 4,5 4,6 4,7

2 5,5 5,6 5,7 5,8 4,8 4,9 4,10 4,11 3,11 3,12 3,13 3,14 2,14 2,15 2,16
6,6 6,7 6,8 6,9 5,9 5,10 5,11 5,12 4,12 4,13 4,14
7,7 7,8 7,9 7,10 6,10 6,11 6,12
8,8 8,9 8,10

3 9,9 9,10 9,11 8,11 7,11 7,12 7,13 6,13 5,13 5,14 5,15 4,15 3,15 3,16
10,10 10,11 10,12 9,12 8,12 8,13 8,14 7,14 6,14 6,15
11,11 11,12 11,13 10,13 9,13 9,14
12,12 12,13

4 13,13 13,14 12,14 11,14 10,14 10,15 9,15 8,15 7,15 7,16 6,16 5,16 4,16
14,14 14,15 13,15 12,15 11,15 e1,16 10,16 9,16 8,16
15,15 15,16 14,16 13,16 12,16
16,16

In case we have fewer than n processors, there is very little change in the structure of the parallel
algorithm. At each phase, the processors compute the starting and the ending indices and perform

4



Parallel Algorithms and Applications, 11(1-2):61-69, 1997.

the summations in this range according to the formula (1). At the end of the phase, the entire
superdiagonal is broadcast to all p processors, and the matrix F is updated to get ready for the
next phase. Figure 4 shows the distribution of the elements over the processors at each step of the
algorithm for n = 16 and p = 4.

4 Analysis of E�ciency and Implementation Results

As seen from Figure 3, the parallel version of Parlett's algorithm �rst performs dn=pe function evalu-
ations. Assuming a single function evaluation requiresK arithmetic steps, the parallel computation
of the main diagonal requires

K

�
n

p

�
� K

�
n

p
+ 1

�

arithmetic operations. When computing the Lth superdiagonal, each processor computes d(n �
L)=pe elements. We calculate the number of parallel arithmetic operations required to compute all
superdiagonals as

n�1X
L=1

�
n� L

p

�
(4L) �

n�1X
L=1

�
n� L

p
+ 1

�
(4L) =

2

3p
(n3 � n) + 2n2 � 2n .

Thus, the total arithmetic complexity of the parallel algorithm is found as

Tp = K

�
n

p
+ 1

�
+

2

3p
(n3 � n) + 2n2 � 2n .

In order to calculate the communication penalty, we take a closer look at the communication steps
of the algorithm. After a processor computes d(n�L)=pe elements of the Lth superdiagonal, these
elements are broadcast to all the other processors. This operation is called a multi-node broadcast
operation. A naive method of accomplishing this task is to perform n sequentially-arranged single-
node broadcast operations. A better strategy is to perform simultaneous broadcast operations
in order to achieve maximum concurrency [1]. Let Tb be the time required to perform a multi-
node broadcast operation on p single-precision oating-point numbers residing on p processors.
For example, on the hypercube architecture, we have Tb = 2p � 2. Since during the Lth phase
d(n � L)=pe elements are to be broadcast, we calculate the total communication penalty of the
parallel algorithm as

Tc =
n�1X
L=0

�
n� L

p

�
Tb �

n�1X
L=0

�
n� L

p
+ 1

�
Tb =

 
n2 + n

2p
+ n

!
Tb .

The e�ciency of the parallel algorithm can be estimated using the arithmetic and communication
complexity values T , Tp, and Tc. Let � be the ratio of the time required to transfer a oating-point
number to an adjacent node to the time required to perform a oating-point operation. Using this
value of � , we can calculate the estimated e�ciency of the parallel algorithm as

Eest =
T

p(Tp + �Tc)
.

In order to compute the estimated e�ciency we need to estimate the size of K, which is the number
of arithmetic operations required to compute the scalar function f(�). Our experiments indicated

5



Parallel Algorithms and Applications, 11(1-2):61-69, 1997.

that for most common functions, e.g., logarithm, square-root, trigonometric, and exponential func-
tions, the value ofK is between 5 and 15. Thus, we can take an average valueK = 10. Furthermore,
we found that the value of � on the Meiko CS-2 approximately equals to 35. Using these values,
we plot the estimated e�ciency of the parallel algorithm in Figure 5 for matrix sizes between 64
and 1536.

Figure 5: Theoretical e�ciency as a function of the matrix size.

256 512 768 1024 1280 1536

matrix size

0

0.2

0.4

0.6

0.8

1
th

eo
re

tic
al

 e
ffi

ci
en

cy

p=4
p=6
p=8
p=10
p=12
p=16

We implemented the parallel algorithm on a Meiko CS-2 multiprocessor with 16 processors, in
which each node is a Sparc processor equipped with 256 MBytes of memory. In our experiments,
we computed the functions of matrices of dimensions ranging from 64 to 1536. In Figure 6, we
give the actual (experimental) e�ciency of the parallel algorithm as a function of the matrix size.
The timing values used to compute these e�ciency values are the average timings for computing
matrix square-root, logarithm, and exponential functions. As can be seen from Figures 5 and 6, the
estimated e�ciency values are nearly equal to the actual e�ciency values obtained. Furthermore,
the e�ciency is almost constant for matrix size greater than 500.

Figure 6: Actual e�ciency as a function of the matrix size.

256 512 768 1024 1280 1536

matrix size

0

0.2

0.4

0.6

0.8

1

ex
pe

rim
en

ta
l e

ffi
ci

en
cy

p = 4
p = 6
p = 8
p = 10
p = 12
p = 16

6



Parallel Algorithms and Applications, 11(1-2):61-69, 1997.

5 Conclusions

We have presented a parallelization of Parlett's algorithm for computing functions of upper trian-
gular matrices. The parallel algorithm preserves the numerical properties of the serial algorithm,
and is suitable for implementing on coarse-grain parallel computers. Our experiments on a Meiko
CS-2 has indicate that the parallel algorithm obtains nearly constant e�ciency (linear speedup) for
small number of processors and for matrices of size larger than 500.

The presented parallel algorithm computes an arbitrary function of an n� n upper triangular
matrix in O(n2) time using n processors. However, it is possible to compute the matrix function
in O(n logn) time by parallel computation of the summation terms given by (1), which would
require O(n2) processors. It is an open question whether Parlett's algorithm can be further par-
allelized, more speci�cally whether an O(log n)-time parallel algorithm can be obtained, which
uses Parlett's summation (1). However, it is shown in [4] that the commutativity property and
Bartels-Stewart algorithm for solving Sylvester's equation yield a divide-and-conquer algorithm for
computing functions of upper triangular matrices. The resulting algorithm requires approximately
the same number of arithmetic operations as Parlett's algorithm, and allows further paralleliza-
tion. The parallel divide-and-conquer algorithm given in [4] requires O(log3 n) time using O(n6)
processors to compute an arbitrary function of an n� n upper triangular matrix.

References

[1] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation, Numerical Methods.
Englewood Cli�s, NJ: Prentice-Hall, 1989.

[2] C. Davis. Explicit functional calculus. Linear Algebra and its Applications, 6:193{199, 1973.

[3] G. H. Golub and C. F. van Loan. Matrix Computations. Baltimore, MD: The Johns Hopkins
University Press, 2nd edition, 1989.

[4] C� . K. Ko�c and B. Bakkalo�glu. A parallel algorithm for functions of triangular matrices. Com-

puting, 57(1):85{92, 1996.

[5] B. N. Parlett. A recurrence among the elements of functions of triangular matrices. Linear

Algebra and its Applications, 14:117{121, 1976.

7


