
Electronics Letters, 32(22):2063-2065, 24th October 1996.

Parallel Canonical Recoding

C� . K. Ko�c

Electrical & Computer Engineering

Oregon State University, ECE 220

Corvallis, Oregon 97331, USA

Abstract

We introduce a parallel algorithm for generating the canonical signed-digit expansion of an n-bit
number in O(logn) time using O(n) gates. The algorithm is similar to the computation of the

carries in a carry look-ahead circuit. We also prove that if the binary number x + bx=2c is given,

then the canonical signed-digit recoding of x can be computed in O(1) time using O(n) gates.

1 Introduction

Recoding techniques (Booth recoding, bit-pair recoding, etc.) for sparse signed-digit representations
of binary numbers have been e�ectively used in multiplication [3, 4] and exponentiation algorithms
[2]. For example, the original Booth recoding technique [3, 4] scans the bits of the multiplier one
bit at a time, and adds or subtracts the multiplicand to or from the partial product, depending on
the value of the current bit and the previous bit. The modi�ed versions of the Booth algorithm
scan the bits of the multiplier two bits or three bits at a time [4]. These techniques are equivalent
in the sense that a sparse radix-2 signed-digit representation of the multiplier is obtained, in which,
three symbols f1; 0; 1g are allowed for the digit set.

The signed-digit representation is named canonical if it contains no adjacent nonzero digits
[6, 3, 4]. The canonical signed-digit vector can be constructed using an algorithm of Reitwiesner
[6] who has shown the canonical signed-digit vector for x is unique if the binary expansion of x is
viewed as padded with an initial zero. The algorithm computes the signed-digit representation y
starting from the least signi�cant digit and proceeding to the left. First the auxiliary carry variable
c0 is set to 0 and subsequently the binary expansion of x is scanned. The canonically recoded digit
yi and the next value of the auxiliary binary variable ci+1 for i = 0; 1; 2; : : : ; n � 1 are calculated
using the values of xi, xi+1, and ci according to Table 1.

For example, we compute the canonical recoding of x = 478 = (0111011110) by starting with
c0 = 0, and then computing yi and ci+1 using xi+1, xi, and ci for i = 0; 1; : : : ; 9. The resulting
vector is y = 1000100010. In this example the number x contains 7 nonzero bits while its canonically
recoded version contains only 3 nonzero digits. Meanwhile, the original Booth's algorithm calculates
the following signed-digit representation: y0 = (1001100010), which contains 4 nonzero digits. The
canonical signed-digit vector y is optimal in the sense that it has the minimum number of nonzero
digits among all signed-digit vectors representing the same number. Unfortunately, the canonical
signed-digit recoding technique seems to have a de�ciency. The computation, as suggested by Table
1, is not parallel. It has been noted in [4, page 104] that \the bits of the multiplier are generated
sequentially", while in the original and modi�ed Booth's algorithms we may generate the bits
simultaneously, i.e., there is no carry propagation. However, we show here that the generation of
the canonically recoded digits can be obtained in O(log n) time using O(n) gates.

1



Electronics Letters, 32(22):2063-2065, 24th October 1996.

2 Parallel Canonical Recoding

The most time-consuming process in the computation of the canonical signed-digit representation
of a given binary number is the computation of the `carry' vector. If the carry vector c for a given
x is already available, then the digits of y can be computed in O(1) time using O(n) gates. As
can be seen from Table 1, yi = 1 when x0

i+1(xi � ci) is true and yi = 1 when xi+1(xi � ci) is true.
Since yi takes one of the three values f0; 1; 1g, we need to use 2 bits to encode it. Let uivi denote
these two bits encoding yi such that uivi = 00, uivi = 01, and uivi = 10 encode the values of yi as
0, 1, and 1, respectively. It follows that ui = x0

i+1(xi � ci) and vi = x0
i+1(xi � ci). Therefore, the

computation of the entire y vector requires 2n EXOR and 2n AND gates, and is accomplished in
O(1) gate delays.

We need to concentrate on fast computation of the carry vector in order to parallelize the
canonical recoding algorithm. The carry ci+1 is computed using the values of xi+1, xi, and ci. We
write the simpli�ed boolean equation for computing ci+1 from Table 1 as

ci+1 = xixi+1 + cixi + cixi+1 = xixi+1 + ci(xi + xi+1) . (1)

Let gi = xixi+1 and pi = xi + xi+1, then the above equation can be written as

ci+1 = gi + cipi . (2)

This formulation immediately suggests that the elements of the carry vector can be computed in
the same way as the computation of the carries in a carry look-ahead circuit. The main di�erence
is in the de�nitions of the generate gi and propagate pi functions, and that c0 = 0 in the beginning,
which simpli�es the circuit even further. For example, if we write the equations giving ci for
i = 1; 2; 3; 4, we notice that they are exactly in the same format as those for the carries in a carry
look-ahead circuit:

c1 = g0 + c0p0 = g0 ,

c2 = g1 + c1p1 = g1 + g0p1 ,

c3 = g2 + c2p2 = g2 + g1p2 + g0p1p2 ,

c4 = g3 + c3p3 = g3 + g2p3 + g1p2p3 + g0p1p2p3 .

In order to compute the carry vector (cn; cn�1; : : : ; c1), we follow the formulation of Brent and Kung
[1]. Let (�; �) denote an ordered pair of binary numbers and `�' denote the operation on such pairs
de�ned as

(�1; �1) � (�2; �2) = (�1 + �1�2; �1�2) . (3)

It is easy to prove that this operation is associative [1]. We will use this operation on pairs
Qi = (gi; pi), and prove that the computation of the elements of the carry vector can be reduced
to a pre�x computation on the vector of pairs (Qn�1; Qn�2; : : : ; Q0). Since c1 = g0, the carry c1 is
simply equal to the �rst element of the pair Q0. Furthermore, we notice that

Q1 �Q0 = (g1; p1) � (g0; p0) = (g1 + g0p1; p0p1) ,

i.e., the carry c2 is found by calculating Q1�Q0, and then taking the �rst element from the resulting
pair. Similarly, the carry c3 is the �rst element of the resulting pair obtained from Q2 � Q1 � Q0.
Since ci+1 = gi + cipi is the �rst element of the pair obtained from the computation

(gi; pi) � (ci; p0p1 � � � pi�1) = (gi + cipi; p0p1 � � � pi�1pi) ,

2



Electronics Letters, 32(22):2063-2065, 24th October 1996.

it follows by induction that ci+1 is obtained as the �rst element of the resulting pair from the
computation Ri = Qi �Qi�1 � � � � �Q0. Furthermore, the operation `�' is an associative operation,
and thus, we can use a parallel pre�x (su�x) computation algorithm to obtain the pre�x (su�x)
products R0; R1; : : : ; Rn�1.

It is well known that the pre�x product of n quantities can be performed in log(n) time using
O(n) nodes [5, 1], where the unit of time is determined by how long it takes to execute a `�'
operation. In our case, the `�' operation uses 2 AND gates and 1 OR gate, and requires only 2
gate delays. Therefore, the computation of Ri for i = 0; 1; : : : ; n� 1 requires only O(n) gates and
2 log(n) gate delays. Once we compute Ri, we extract ci+1 from it by taking the �rst element. The
canonical signed-digit vector y is then computed using the elements of the input x and the carry
c vectors. As we have explained earlier, this computation requires 2n EXOR and 2n AND gates,
and is accomplished in O(1) gate delays. Therefore, we conclude that the canonical signed-digit
representation of an n-bit binary number can be computed in O(log n) gates using O(n) gates.

3 An Example

Here we show how to compute the canonical recoding of a 9-bit binary number using the Ladner-
Fischer parallel pre�x circuit [5]. The Ladner-Fischer parallel pre�x circuit computes the pre�x
product of n quantities in d time using 4n� F (5 + d) + 1 nodes, where n = 2d and F (i) is the ith
Fibonacci number de�ned by the recursion F (i) = F (i � 1) + F (i � 2) with the initial conditions
F (0) = 0 and F (1) = 1. It follows that for n = 8, we have d = 3, and thus the pre�x circuit
requires 3 units of time, and has 12 nodes. Given (x8; x7; : : : ; x0), we �rst compute the generate
and propagate functions gi = xixi+1 and pi = xi + xi+1 for i = 0; 1; : : : ; 7. This computation is
accomplished using the circuit elements denoted by the hollow circles on the top of Figure 1. The
pairs Qi = (gi; pi) are then applied to the 8-input Ladner-Fischer circuit. The parallel pre�x circuit
computes Ri for i = 0; 1; : : : ; 7 using the pre�x nodes denoted by the �lled circles in Figure 1. We
then extract ci for i = 1; 2; : : : ; 8 from Ri. The value of c0 = 0 by de�nition. Finally, we compute
yi for i = 0; 1; : : : ; 8 using xi, xi+1, and ci in the last level of the circuit using the hollow square
boxes. The output yi is a 2-bit number, and thus, the hollow square box is a 3-input 2-output
combinational circuit. The darker lines in Figure 1 denote pairs of binary numbers.

4 A Property of Parallel Canonical Recoding

Suppose that we are interested in computing a + b using a carry look-ahead adder, where a = x
and b = bx=2c. In order to compute the sum vector s, the carry look-ahead adder computes the
carries in advance using the carry look-ahead circuit. The generate and propagate functions of this
addition operation are gi = aibi = xixi+1 and pi = ai + bi = xi + xi+1, respectively. Therefore, the
generate and propagate functions obtained from this addition are exactly the same generate and
propagate functions which would be computed by the parallel canonical recoding algorithm. Thus,
we can use a carry look-ahead adder to compute parallel canonical recoding of a binary number.
Once the carries are available, the computation of the canonical signed-digits requires only O(1)
time using 2n EXOR and 2n AND gates.

3



Electronics Letters, 32(22):2063-2065, 24th October 1996.

References

[1] R. P. Brent and H. T. Kung. A regular layout for parallel adders. IEEE Transactions on

Computers, 31(3):260{264, March 1982.

[2] �O. E�gecio�glu and C� . K. Ko�c. Exponentiation using canonical recoding. Theoretical Computer

Science, 129(2):407{417, 1994.

[3] K. Hwang. Computer Arithmetic, Principles, Architecture, and Design. New York, NY: John
Wiley & Sons, 1979.

[4] I. Koren. Computer Arithmetic Algorithms. Englewood Cli�s, NJ: Prentice-Hall, 1993.

[5] R. Ladner and M. Fischer. Parallel pre�x computation. Journal of the ACM, 27(4):831{838,
October 1980.

[6] G. W. Reitwiesner. Binary arithmetic. Advances in Computers, 1:231{308, 1960.

Table 1: The canonical recoding.

xi+1 xi ci yi ci+1 Comments

0 0 0 0 0 string of 0s
0 0 1 1 0 end of 1s
0 1 0 1 0 a single 1
0 1 1 0 1 string of 1s
1 0 0 0 0 string of 0s
1 0 1 1 1 a single 0
1 1 0 1 1 beginning of 1s
1 1 1 0 1 string of 1s

Figure 1: An example of the parallel canonical recoding.

generate &

propagate

functions

parallel

prefix

circuit

signed-digit

computation

Q0Q1Q2Q3Q4Q5Q6Q7

R0R1R2R3R4R5R6R7

c1c2c3c4c5c6c7c8 c0

y0y2y3y4y5y6y7y8 y1

x0x1
x2x3x4x5x6x7x8

x0x1
x2x3x4x5x6x7x8

0

0

4


