
Computing, 57(1)85-92, 1996.

A Parallel Algorithm for Functions of Triangular Matrices �

C� . K. Ko�c and B. Bakkalo�glu

Department of Electrical & Computer Engineering

Oregon State University

Corvallis, Oregon 97331

Abstract

We present a new parallel algorithm for computing arbitrary functions of triangular matrices.

The presented algorithm is the �rst one to date requiring polylogarithmic time, and computes an

arbitrary function of an n � n triangular matrix in O(log3 n) time using O(n6) processors. The

algorithm requires the eigenvalues of the input matrix be distinct, and makes use of the commutativity

relationship between the input and output matrices.

1 Introduction

Computing a function f(A) of an n � n matrix A is an important problem in linear algebra,
engineering and applied mathematics. There are several methods including computing Jordan de-
composition, Schur decomposition, and approximation methods such as Taylor expansion, rational
Pad�e approximations, etc. The Jordan decomposition approach seems to have computational di�-
culties unless A is diagonalizable and has a well-conditioned matrix of eigenvectors. On the other
hand, the Schur decomposition is more stable and can be easily applied for matrix function evalua-
tion. If A = QTQH is the Schur decomposition of a full matrix A, then we have f(A) = Qf(T)QH ,
where T is a triangular matrix. Thus, an e�ective algorithm for �nding the matrix valued functions
of triangular matrices is needed. A complicated explicit expression for f(T) is known [5, 4]. Given
the upper triangular matrix T = ftijg with �i = tii and the function f(T) = ffijg de�ned on R,
we have fij = 0 for i > j, fii = f(�i), and also for i < j

fij =
X

(s0;:::;sk)2Sij

ts0;s1ts1;s2 � � � tsk�1;skf [�s0 ; : : : ; �sk] ,

where Sij is a set of distinct sequence of integers such that s0 = i < s1 < : : : < sk = j; 1 � k � j�i,
and f [�s0 ; : : : ; �sk] is the kth order divided di�erence of f at f�s0 ; : : : ; �skg. Unfortunately, com-
puting the upper triangular matrix function F = f(T) using this method requires O(2n) arithmetic
operations, which is computationally prohibitive for large matrices [5].

2 Parlett's Algorithm

The �rst practical (in terms of the required number of arithmetic operations) algorithm for com-
puting an arbitrary function of an upper triangular matrix is given by Parlett [9]. The algorithm

�This work is supported in part by the National Science Foundation under grant ECS{9312240.

1

Computing, 57(1)85-92, 1996.

is derived using the property that the matrices T and F commute:

FT = TF . (1)

Parlett shows that by expanding the matrix multiplication and solving for fij in the above, we
obtain the summation formula

fij = tij
fjj � fii
tjj � tii

+
1

tjj � tii

j�1X
k=i+1

(tikfkj � fiktkj) . (2)

Parlett's algorithm starts with computing the main diagonal entries of F . Since the main diagonal
entries tii are the eigenvalues of T , fii is calculated by applying f to each tii, i.e., fii = f(tii).
After computing the main diagonal entries, the algorithm computes the superdiagonals one at
a time, using the summation expression (2). The number of arithmetic operations required to
compute an element of the Lth superdiagonal is easily calculated as 4L. Since there are (n � L)
elements in the Lth superdiagonal, the computation of each superdiagonal requires 4(n � L)L
arithmetic operations. Thus, assuming a single scalar function evaluation requires K arithmetic
operations, Parlett's algorithm requires a total of Kn+ 2

3 (n
3�n) arithmetic operations to compute

all elements of the upper triangular matrix F . However, we must remark that if T has close or
multiple eigenvalues, this algorithm will give inaccurate results. Alternative methods for dealing
with the repeated eigenvalue case can be found in [9, 5].

Parlett's algorithm �rst computes the main diagonal elements of the matrix F by performing
n independent scalar function evaluations. Provided that we have n processors available, this step
can be performed in time for a single function evaluation. The remaining elements of the upper
triangular matrix can be obtained by computing each super diagonal in parallel. This parallel
algorithm has n phases; a superdiagonal vector is computed at each phase using all the available
processors. If there are n processors available, we can compute an arbitrary function of an n � n
upper triangular matrix in O(n2) time. However, it is also possible to compute the matrix function
in less than O(n2) time using more than O(n) processors. To see this, we note that the maximum
length of the summation formula (2) is equal to n � 2. Using O(n) processors, each summation
can be obtained in O(logn) time. Obtaining the summation for all the elements on the same
superdiagonal would require O(n2) processors and O(logn) time, and by repeatedly using these
O(n2) processors on all superdiagonals we obtain the matrix function in O(n logn) time. It is an
open question whether Parlett's algorithm can further be parallelized, more speci�cally whether a
parallel algorithm requiring polylogarithmic time can be obtained, which uses Parlett's summation.

3 The Divide-and-Conquer Algorithm

A divide-and-conquer algorithm making use of the commutativity relationship of Equation (1) has
been proposed in [6]. This algorithm is of the same order of complexity as Parlett's algorithm, but
the block structure of the algorithm makes it favorable to Parlett's method for computers with two
levels of memory. We will now show that this algorithm can also be e�ciently parallelized. Let
n = 2k and the matrices T and F be partitioned as

T =

"
T1 T2
0 T3

#
and F =

"
F1 F2
0 F3

#
,

2

Computing, 57(1)85-92, 1996.

respectively. Here T1; F1 2 Ck�k and T3; F3 2 Ck�k are upper triangular, and T2; F2 2 Ck�k are
full matrices. Here we use the commutativity relationship (1), and expand the matrix equation
FT = TF in terms of the products of the matrix blocks as

T1F1 = F1T1 ,

T3F3 = F3T3 ,

T1F2 + T2F3 = F1T2 + F2T3 .

Since T1 and T3 are upper triangular, we have F1 = f(T1) and F3 = f(T3). Assuming F1 and F2
are already computed, we de�ne C = F1T2 � T2F3, and proceed to solve the matrix equation

T1F2 � F2T3 = C (3)

in order to calculate F2. This matrix equation is known as the Sylvester equation [5]. Let �i and
�i for i = 1; 2; : : : ; k be the distinct eigenvalues (diagonal elements) of T1 and T3. The Sylvester
equation (3) has a unique solution F2 if and only if �i 6= �j for all i and j. This unique solution
can be found using Bartels-Stewart algorithm [1] or Kronecker product method [2], both of which
require O(n3) arithmetic operations. A detailed analysis of the solution for the speci�c case of
upper triangular coe�cient matrices has been given in [6].

The new matrix function evaluation algorithm is a recursive algorithm, however, it can be
`unrolled' to obtain a non-recursive algorithm. The progression of the algorithm is similar to the
inversion of triangular matrices in [8]. Unwinding the recursion to the lowest level and then building
back up again, we produce a simple log(n)-phase algorithm for �nding f(T). Let n be a power of
2, i.e., n = 2d. The non-recursive algorithm �rst applies the function f to the main diagonal. After
obtaining the scalar function of the main diagonal, in the �rst phase the algorithm solves a scalar
Sylvester equation which is a linear equation in one unknown fi;i+1,

tiifi;i+1 � fi;i+1ti+1;i+1 = fiiti;i+1 � ti;i+1fi+1;i+1 for i = 1; 3; 5; : : : n� 1 .

Prior to the kth step, the evaluation of n=2k�1 matrix blocks (of dimension 2k�1�2k�1) in the main
diagonal have been completed. During the kth step, the algorithm uses these n=2k�1 matrix blocks
in pairs, and solves n=2k Sylvester equations in order to obtain n=2k matrix blocks (of dimension
2k � 2k) required for the next step. The total number of arithmetic operations for the unrolled
divide-and-conquer algorithm can be given as

T (n) = Kn+
d�1X
k=0

n

2k
S(2k) +

n

2k+1
U(2k) = Kn+

2n3

3
+
n2

2
�

7n

6
,

where S(n) is the number of arithmetic operations required to solve a Sylvester matrix equation
of size n, and U(n) is the number of arithmetic operations needed to compute the n� n matrix C
using C = F1T2 � T2F3, which are found as S(n) = 2n3 and U(n) = 2n3 + n2 [6].

4 The Parallel Divide-and-Conquer Algorithm

The divide-and-conquer type algorithm for computing an arbitrary function of an n�n triangular
matrix has log(n) phases; however, at the kth phase a Sylvester equation of size 2k � 2k needs to
be solved. We now show how to parallelize the solution of the Sylvester equation. The proposed

3

Computing, 57(1)85-92, 1996.

parallel algorithm for solving the Sylvester equation is based on the Kronecker product algorithm.
Let A 2 Rm�m and B 2 Rm�m be upper triangular matrices, and C 2 Rm�m be a full matrix.
Then solving the Sylvester equation AX +XB = C of size m is equivalent to solving the m2 �m2

linear equation
HX = C , (4)

where X and C are them2�1 vectors formed by stacking the transposed rows of them�m matrices
X and C, respectively. Also H is an m2 �m2 matrix such that H = A
 I + I
 BT , where
 is
the Kronecker (or tensor) product. In terms of the matrix blocks the Kronecker product matrix
can be represented as H = T1
 I � I
 T T

3 . For example, for m = 4, we have

H =

2
6664
a11I +BT a12I a13I a14I

0 a22I +BT a23I a24I
0 0 a33I +BT a34I
0 0 0 a44I +BT

3
7775

The structure of H can be exploited to design a parallel algorithm for the solution of the equation
HX = C. This algorithm is similar to the parallel inversion of triangular matrices [3]. Let D be the
m2 �m2 diagonal matrix such that dii = hii for i = 1; 2; : : : ;m2. Let J = D�1H, and U = I � J ,
where U is an m2�m2 matrix with diagonal elements all zero. It can easily be proven that U i = 0
for i � 2m� 1. We will try to analyze this property of the block upper triangular matrix U . The
general form of U is given as

U =

2
66664
L11 a12I a13I � � � a1mI
0 L22 a23I � � � a2mI

0 0
. . .

. . .
...

0 0 0 � � � Lmm

3
77775 ,

where the block diagonal element Lii is a m �m lower triangular matrix with zero entries in the
main diagonal. Let the kth power of U be given as

Uk =

2
66664
P11 P12 � � � P1m
0 P22 � � � P2m

0 0
. . .

...
0 0 � � � Pmm

3
77775 ,

where Pii = Lkii. The matrix Lii is of the form

Lii =

2
66666664

0 0 0 � � � 0
� 0 0 � � � 0

� �
. . .

. . . 0
...

. . .
. . .

. . . 0
� � � � � � 0

3
77777775

,

where � denotes the nonzero entries. The consecutive powers of Lii is given as

L2
ii =

2
66666664

0 0 0 � � � 0
0 0 0 � � � 0

� 0
. . .

. . . 0
...

. . .
. . .

. . . 0
� � � � � 0 0

3
77777775

, Lm�1ii =

2
6666664

0 0 0 � � � 0
0 0 0 � � � 0
...

. . .
. . .

. . . 0
0 0 0 � � � 0
� 0 � � � 0 0

3
7777775

, Lmii = 0 .

4

Computing, 57(1)85-92, 1996.

Therefore for k � m the main diagonal matrix blocks of Uk are zero matrices, and the block
structure of Um becomes

Um =

2
66664
0 P

0

12 � � � P
0

1m

0 0 � � � P
0

2m

0 0
. . .

...
0 0 � � � 0

3
77775 .

Now we can easily show that

J�1 = I + U + U2 + � � �+ U2m�2

by multiplying the right hand side with J = I � U . Once J�1 is computed, we compute H�1

using H�1 = J�1D�1. A fast algorithm for evaluating the matrix polynomial I +A+ � � �+AN�1

is given in [7]. This algorithm is based on the cyclic reduction technique and computes this sum
using 2blog2Nc � 1 matrix multiplications and blog2Nc matrix additions. Since O(m3) processors
su�ce to multiply two m�m matrices in O(logm) time, a matrix product of size m2 �m2 can be
performed in O(logm) time using O(m6) processors. Therefore, the computation of J�1 requires
logm � (2blog 2m�1c�1) = O(log2m) time by using O(m6) processors. The solution of Sylvester's
equation is then computed using H�1C = J�1D�1C which requires an additional O(logm) time
with O(m2) processors.

The divide-and-conquer algorithm solves n=2k Sylvester equations of dimension 2k�1 � 2k�1

at the kth step of the algorithm where k = 1; 2; : : : ; log(n). Let m = 2k�1 be the size of the
matrix blocks at the kth step of the algorithm. We have shown that the solution of an m � m
Sylvester equation in O(logm) time requires O(m6) processors. At each phase of the algorithm
n=2m Sylvester equations can be solved at the same time. Therefore the total number of processors
needed at the kth step of the algorithm can be found as O((n=2m)m6) = O(nm5). Since the
maximum value of m is n=2, the maximum number of processors is found as O(n6). On the other
hand, the arithmetic complexity of each step of the algorithm depends on that of the half-sized
problem plus the parallel solution of the linear system HX = C. The parallel block upper triangular
linear system solution is shown to require O(m6) processors and O(log2(2k�1)) time at each phase.
The total number of arithmetic operations to compute an arbitrary function of a triangular matrix
is found as

log nX
k=1

log2(2k�1) =
1

6
log n(logn� 1)(2 log n� 1) = O(log3 n) .

5 An Example

We will illustrate the algorithm by computing the square-root of the following 4� 4 matrix

T =

2
6664
16 �15 �76 �14
0 1 �50 14
0 0 81 �44
0 0 0 4

3
7775 .

The main diagonal elements can be obtained by applying the square root function. The �rst
superdiagonal is obtained by solving the scalar Sylvester equation, which is in fact a linear equation
in one unknown:

f12 =
f11t12 � t12f22

t11 � t22
= �3 and f34 =

f33t34 � t34f44
t33 � t44

= �4 .

5

Computing, 57(1)85-92, 1996.

The matrix blocks are found as

T1 =

"
16 �15
0 1

#
, T2 =

"
�76 �14
�50 14

#
, T3 =

"
81 �44
0 4

#
.

The computed blocks of the matrix F are

F1 =

"
4 �3
0 1

#
, F3 =

"
9 �4
0 2

#
.

The Kronecker product matrix H is found as

H = T1
 I � I
 T T
3 =

2
6664
�65 0 �15 0
44 12 0 �15
0 0 �80 0
0 0 44 �3

3
7775 ,

and J becomes

J = D�1H =

2
6664

1 0 0:2308 0
3:6667 1 0 �1:25

0 0 1 0
0 0 �14:6667 1

3
7775 .

Removing the unity elements along the diagonal we obtain U = I � J . The inverse of J can be
found using the power method as

J�1 = I + U + U2 =

2
6664

1 0 �0:2308 0
�3:6667 1 19:1795 1:25

0 0 1 0
0 0 14:6667 1

3
7775 ,

and H�1 becomes

H�1 = J�1D�1 =

2
6664
�0:0154 0 0:0029 0
0:0564 0:0833 �0:2397 �0:4167

0 0 �0:0125 0
0 0 �0:1833 �0:3333

3
7775 .

We �rst compute C

C = F1T2 � T2F3 =

"
530 �374
400 �214

#
,

and, thus, C is found as

C =
h
530 �374 400 �214

iT
.

Multiplying C with H�1, we obtain F2 as

F2 = H�1C =
h
�7 �8 �5 �2

iT
,

which is the matrix F2 in the stacked row format. Thus, we �nd F2 as

F2 =

"
�7 �8
�5 �2

#
.

6

Computing, 57(1)85-92, 1996.

References

[1] R. H. Bartels and G. W. Stewart. Solution of the matrix equation AX +XB = C. Communi-

cations of the ACM, 15(9):820{826, 1972.

[2] R. E. Bellman. Introduction to Matrix Analysis. New York, NY: McGraw-Hill, 1970.

[3] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation, Numerical Methods.
Englewood Cli�s, NJ: Prentice-Hall, 1989.

[4] C. Davis. Explicit functional calculus. Linear Algebra and its Applications, 6:193{199, 1973.

[5] G. H. Golub and C. F. van Loan. Matrix Computations. Baltimore, MD: The Johns Hopkins
University Press, 2nd edition, 1989.

[6] C� . K. Ko�c. A divide-and-conquer algorithm for functions of triangular matrices. Unpublished
Manuscript, June 1995.

[7] L. Lei and T. Nakamura. A fast algorithm for evaluating the matrix polynomial I +A+ � � �+
AN�1. IEEE Transactions on Circuits and Systems { I: Fundamental Theory and Applications,
39(4):299{300, April 1992.

[8] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hyper-

cubes. San Mateo, CA: Morgan Kaufmann Publishers, 1992.

[9] B. N. Parlett. A recurrence among the elements of functions of triangular matrices. Linear

Algebra and its Applications, 14:117{121, 1976.

7

