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he motivation for studying high-speed
. and space-efficient” algorithms for

modular multiplication comes from
their applications in public-key cryptography.
The RSA 2lgorithm! and the Diffie-Hellman

key. exchange scheme? require modular -

exponentiation, which binary or m-ary meth-
ods can break into a series of modular mul-
tiplications.? Certainly one of the most
interesting and useful advances in this'realm

" has been what we call the Montgomery mul-
tiplication algorithm, introduced by Peter L. -

Morigtomery.4 (For some recent applications,
see the discussion by Naccache et al®)

The Montgomery multiplication algorithm_

speeds up the modular multiplications and
squarings required for exponentiation. It
computes the Montgomery product’ '

MonPro(a; ) = abr mod n

given a, b < n and # such that the greatest

- common. denominator (z, r) = 1. Although
the algorithm works for any 7 that is rela--

tively prime to #,.it is more useful when 7 is
taken to be apower of 2. In this case, the
Montgomery algorithm performs divisions
by a L power of 2, which is an intrinsically fast

““opeération on general ~purpose computers

(for example, signal processors and micro-
processors). This leads to an implementa-
tio’r_l.,‘that is not only simpler than ordinary
modular multiplication, but typically-faster
as well ?

In' this article, we study the operanons

“ iavolved in computing the Montgomery prod-
“uct, describe several high-speed, space-effi-
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(mod 7). The resulting number ¢ in Equation. 1 is indeed the
n residue of product ¢ = ab (mod n), since

¢ =abr (mod n)
= arbrr™ (mod n)
= cr (mod n)

To describe the Montgomery reduction algorithm, we need
an additional quantity, »’, the integer with property
rr~' — nn’ = 1. We can compute both integers »~! and »’
with the extended Euclidean algorithm.> We compute

MonPro(a, b) as follows: - i

function MonPro(a, b)

Stepl.t=ab .

Step 2. u := [t + (¢’ mod Hnl/r

Step 3. if # > » then return © — 7, else return

Here ¢t and u are temporary variables (multiprecision
unsigned integers). Multiplication modulo 7 and division by »
are both intrinsically fast operations, since » is a power of 2.
Thus, the Montgomery product algorithm is potentially faster
and simpler than ordinary computation of ab mod #, which
involves division by 7. However, conversion from an ordinary
residue  to an # residue, computation of #’, and conversion
back to an ordinary residue are time-consuming tasks. Thus,
it is not a good idea to use the Montgomery product compu-
tation algorithm when only a single modular multiplication
will be performed. It is more suitable for cases requiring sev-
eral modular multiplications with respect to the same modu-
lus, as when one needs to compute modular exponentiation.

Using the binary method for computing the powers,> we
replace the exponentiation operation with a series of square
and multiplication operations modulo 7. Let j be the number
of bits in exponent e. The following exponentiation algorithm
is one way to compute x := g° mod 7z with O()) calls to the
Montgomery multiplication algorithm. Step 4 of the modular
exponentiation algorithm computes x using X via the proper-
ty of the Montgomery algorithm: MonPro(x,1) = x-1r-! =
xrr~t = xmod .

function ModExp(a,e,»)
Step 1. @ := ar mod n
Step 2. X := 1r mod »
Step 3. fori=j— 1 downto 0
X = MonPro(x, x)
if ¢, = 1 then X := MonPro(x, a)
Step 4. return x := MonPro(x, 1)

Typical implementations perform operations on large
numbers by breaking the numbers into words. If w is the
computer’s word size, we can think of a number as a
sequence of integers each represented in radix W= 2% If
these “multiprecision” numbers require s words in the radix
W representation, then we take ras »= 2%.

In the following sections, we will give several algorithms
that perform Montgomery multiplication MonPro(a,b); and
analyze their time and space requirements. We performed
time analysis by counting the total number of multiplications,

additions (and subtractions), and memory read and write
operations in terms of the input size parameter s. For exam-
ple, we assume that operation

(€9 = tli+ ] +alj1blil + C @

requires three memory reads, two additions, and one multi-
plication, since most microprocessors multiply two one-word
numbers; leaving the two-word result in one or two registers.
(In some processors, additions may actually involve two
instructions each, since value alj]1b[i] is double precision;
we ignore this distinction in our timing estimates.)

We assume that multiprecision integers reside in memory
throughout the computations. Therefore, assignment oper-
ations performed within a routine correspond to read or
write operations between a register and memory. We count-
ed these to calculate the proportion of the memory access
time in the total running time of the Montgomery multipli-
cation algorithm. In our analysis, we did not take into
account loop establishment and index computations. The
only registers we assume are available are those that hold
carry C.and sum S as in Equation 2 (or equivalently, borrow
and difference for subtraction). Obviously, many micro-
processors have more registers, but this gives a first-order
approximation of the running time, sufficient for a general
comparison of the approaches. Actual implementation on
particular processors will give a more detailed comparison.

We performed the space analysis by counting the total
number of words used as the temporary space. However,
we did not take into account the space required to keep the
input and output values a, b, n, #',, and u.

The algorithms

There are a variety of ways to perform Montgomery mul-
tiplication, just as there are many ways to multiply. Our pur-
pose in this article is to give fairly broad coverage of the
alternatives.

Roughly speaking, we may organize the algorithms based
on two factors. The first factor is whether multiplication and
reduction are separated or integrated. In the separated
approach, we first multiply @ and b, then perform a
Montgomery reduction. In the integrated approach, we alter-
nate between multiplication and reduction. This integration
can be either coarse or fine grained, depending on how often
we switch between multiplication and reduction (specifical-
ly, after processing an array of words, or after just one word).
There are implementation trade-offs between the alternatives.

The second factor is the general form of the multiplication
and reduction steps. One form is operand scanning, by which
an outer loop moves through one operand’s words. Another
form is product scanning, by which the loop moves through
words of the product itself.® The product- or opetand-scan-
ning methods are independent of whether multiplication and
reduction steps are separated or integrated. Moreover, it is
also possible for multiplication to take one form and reduc-
tion the other form, even in the integrated approach.

In each case, we describe the algorithms in this article as
operations on multiprecision numbers. Thus, it is straight-
forward to rewrite the algorithms in an arbitrary radix, for
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Figure 1. SOS method for s = 4. The algorithm first performs multiplication opera-
tiont.= ab (a); it then multiplies n’y by each word of t to find m {b); it obtains the

final result by adding the shifted nm to £ ().

example, in binary or radix-4 form for hardware.

Clearly, quite a few algorithms are‘possible, but we focus
here on five that are representative of the whole set, and that
for the: most part have good-implementation characteristics:

» separated operand scanning (SOS),

s coarsely integrated operand scanning (CIOS),
. finely integrated operand scanning (FIOS),
finely integrated product scanning (FIPS), and
coarsely integrated hybrid scanning (CIHS).

Other possibilities are variants of one-or'more of these
five;: we encourage the interested reader to construct and
evaluate some of them. Two of the methods we analyze here
“have been described previously: SOS (as Improvement 1 in
Dussé and Kaliski”) and FIPS.® The other three, while sug-
gested by previous work; have not been described in detail
or analyzed in comparison with-the others.

' Separated operand scanning
In this method we first compute the product b using

~fori=0tos—1
L Ci=0 )
forj=0tos—1 ) .
(C,8) = tli + jl +aljlblil +.C . o
thi+jl=8
tli+sl=C

where we initially assume ¢ to be zero. The final value-this
algorithm obtains is the 2s-word integer ¢ residing in words
t[0), ¢11], ..., #[2s — 1. g k

Then we compute-« using the formula u = (¢+ mn)/7,
where m := i7" mod 7, To compute u, we first take 7% = ¢, then
add mn to it using the standard multiplication routine, and
finally-divide it by » = 2%, which we accomplish by ignoring
‘the lower.s words of u. Since: m = 7/ mod r,; and the reduc-
tion process proceeds word by word, we can use #,= 7’ mod
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. first element (#i + s and propagating it until it

tions; 2(s + 1) reads, and s =il writes:io 5

ADD (i +51,6) '

The:ADD function in this segment
-performs a carty propagatior that
_~adds-C to'thelinput-array. given by -
the first argument; starting from the

further carry. The ADD function is necessary-for catry, prop-
agation up to the last'word of',t, which: ineféases thé._,si-ze of
i to 2s words-and a single bit. Ho,we-ver,‘;‘savjrign 'this{'bit'
requires a whole word; increasing the: sizeiof titor2sm 1
words: S b frl g
(All the methods we describe require: r;hisv,.,extfg pit, and
hence an extra- word. One way to-avoid the sextra, wordiin
most cases is to define. s.4s the? length in-words.of 2n, rather
than the modulus 7 itself. This s will be the same s in the
current definition, except when the length of » is-a multiple
of the word size. In: that.case:it will beé onIyloge\largér?thdn
the current definition.) : T R
We then. divide the computed value of b
ignoring the lower s words:off:

forj=0to0s :
wulyl =1l +s] .

Finally we obtain the number u in's + 1:'words. The algo-
rithm then performs the multiprecision; subtriction. fiom step
3 of MonPro to reduce u if hecessary. Stép: 3 uses the fol-
lowing code: ' et R

B:=0
fori=0tos~1 R
(B,D) := uli]l =nlil =B

il =D
(B,D):=uls] —B
tlsl=D - :

if B=0 then retirn £[0), #L1]; ..
else return #{0), 24[3]; -..

Because step 3 occurs in the same way.for all five algo:
rithms; we do not repeat this step for the othets: However,
we doitake into-account its;time. and space;requirem,en_ts,
The operations in the. code for. step: 3.contain 2(si#: 1) addi-




A brief inspection of the SOS method, based on our tech-
niques for counting the number of operations, shows that it
requires 2s? + s multiplications, 4s2 + 4s + 2 additions, 6s* +
7s + 3 reads, and 2s* + 6s + 2 writes. (Later we discuss how
to count the number of operations the ADD function
requires.) Furthermore, the SOS method requires a total of
2s + 2 words for temporary results, which store the (2s + 1)-
word array ¢ and the one-word variable m. Figure 1 illus-
trates the SOS method for s = 4.

We define 7, as the inverse of the least significant word
of n modulo 2¢—that is, 7', = —n,"* (mod 2%). We can com-
pute it using a very simple algorithm from Dussé and Kaliski.”
Furthermore, the reason for separating the product compu-
tation ab from the rest of the steps for computing # is that
when a = b, we can optimize the Montgomery multiplica-
tion algorithm for squaring. This optimization allows us to
skip almost half the single-precision multiplications, since
aa; = aa, To perform optimized Montgomery squaring, we
replace the first part of the Montgomery multiplication algo-
rithm with the following simple code:

fori=0tos—1
(€8 :=tli +i] + alilali
forj=i+1tos—1
(C,S) == tli + fl + 2aljlalil + C
tli +j1 =5
tli +s):=C

One tricky part here is that value 2a(jlali] requires more
than two words for storage. If the C value does not have an
extra bit, one way to deal with this is to rewrite the loop to add
the alylali] terms first, without multiplication by 2. The algo-
rithm can then double the result and add in the al#]ali] terms.
While we analyze only the Montgomery multiplication algo-
rithms, readers can analyze Montgomery squaring similarly.

Coarsely integrated operand scanning

CIOS improves on SOS by integrating the multiplication
and reduction steps. Specifically, instead of computing the
entire product ab and then reducing, it alternates between
iterations of the outer loops for multiplication and reduction.
This is possible because the value of m in the ith iteration of
the outer loop for reduction depends only on value #[#], which
is completely computed by the #th iteration of the outer loop
for multiplication. This leads to the following algorithm:

fori=0tos—1
C:=0
forj=0tos—1
(G5 = tlj] + alylbli]l + C

tyl =S8
€8 =1lsl+C
tls] =8
ts +1]:=C
C:=0

m := ¢[0]n'[0] mod W
forj=0tos—1
(€S =tljl + mnljl + C
tlyl =S

€S =tls] +C
tsl =S
tls+1l:=tls +11+ C
forj=0tos
tlyl =2l + 11

We assume atray ¢ to be set to 0 initially. The last j loop shifts
the result one word to the right (that is, division by 2*)—
hence the references to #j] and #0] instead of A7 + 7] and #3].
For a slight improvement, we integrate the shifting into the
reduction as follows:

m := 1[0]n[0] mod W
(C,S) = t[0] + mnl0]
forj=1tos—1
CS) =t + mnlj]l + C
tlji—1:=5
€S =tlsl+C
tls—1]:=58
tlsl:=tls+ 11+ C

Auxiliary array ¢ uses only s + 2 words. This is due to fact
that the shifting occurs one word at a time; rather than s
words at once, saving s — 1 words. The final result is in the
first s + 1 words of array ¢. A related method, which doesn’t

* shift the array (and hence has a greater memory require-

ment), is Dussé and Kaliski’s Improvement 2.7

The CIOS method (with the slight improvement) requires
252 + s multiplications, 4s* + 4s + 2 additions, 6s2 + 7s + 2
reads, and 2s? + 55 + 1 writes, including the final multipreci-
sion subtraction. It uses s.+ 3 words of memory space, a sig-
nificant improvement over the SOS method.

We say that the infegration in this method is coarse because
it alternates between iterations of the outer loop. The next
method alternates between iterations of the inner loop.

Finely integrated operand scanning

FIOS integrates the two inner loops of the CIOS method
into one by computing the multiplications and additions in
the same loop. The algorithm computes multiplications a,b,
and mn, in the same loop and then adds them to form the
final ¢z In this case, the algorithm must compute £, before
entering the loop, since m depends on this value. This cor-
responds to unrolling the first iteration of the loop for j = 0.

fori=0tos—1
(C,9) := t[0] + al0)bli]
ADD(#[11,0)
m := S n[0] mod W
.8 = S+ mnl0]

The algorithm computes partial products of @b one by one
for each value of 4, then adds m#n to the partial product. It
then shifts this sum right one word, making  ready for the
next i iteration.

forj=1ltos—-1

@S = tljl + aljlblil + C .
ADDG[j + 1,0
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Figure 2. An iteration of the FIOS method. The computa-

tion of partial product t = a x b, (a) enables computation
of m¥@.inthat iteration. The algorithm then finds an intet-
mediate result t/*" by adding n x m® to this partial prod-
uct (b).

(C,8) := S+ mnljl
ti-1:=5 =
€8 =tls]l+C
Hs=11:=8
ths) =tls + 1+ C
ts+11:=0

This method differs-from CIOS in:that it has only one inner
loop. Figure 2 llustrates the algorithm for s = 4. FIOS requires
the' ADD function in the inner 7 loop, since there are two dis-
tinct carries: one arising from the multiplication of &;b, and
the other from the multiplication of m#,. Thus, the require-
ment of the ADD function:counterbalances the benefit of
having only one loop: We assume array f to be set to 0
initially.

The FIOS method requirés 2352 +-s multiplications, 58*+ 3s
+ 2 additions, 75* + 55+ 2:reads, and 3s* + 4s + 1 ‘writes,
including the final multiprecision subtraction. (This is about
§* more additions, writes; and reads than CIOS uses.) It
requires a total of s + 3 words of temporary space.

Finely integrated product scanning

Like the previous algorithm, FIPS interleaves computations
ab and mn, but here both computations are in the product-
scanning form. The method keeps the values of »z and 2 in
the same s-word array m. (Kaliski® described this method,
which is related to Improvement 3 in Dussé and Kaliski.”)
The first loop (following this paragraph) computes one part
of product ab and.then adds mn to it. The three-word array
t—that is, [0}, ¢[1}, t[2}—functions as the partial-product
accumulator for products ab and m#n. (The use of a three-
word array assumes that's < W. In-general,-we need log,,
CWIW — 1)) = 2 + logy s words. We can easily: mod1fy the
algorithm to handle a larger-accumulator.).

fori=0tos—1
forj=0t0i~1 :
(C,S) = tl0] + aljlbli - 7]
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- ADD@G{11,0)
(CS) = S + mllnli=7l
10l = ' :
: ADD(t[l] s
(€,8) =1#0] + alibl0]
ADD 11,0 :
mli] =S [0)mod W
S) =8+ mliln0] »

ADDGI1LO)
{07 = #[1]
th1] = ¢{2]
2] =0

This loop computes the ith word of m usthg ', dnd then
adds the least significant woid-of m# to # Since the least sig-.
nificant word of 7 always becomes zero; .the shifting can
occur one word at a time in each iterdtion. We assume array
t to be set to 0 initially: iz 2

The second 41loop (following) completesithe computanon
by formmg the final result wword by Word inithe memory‘
space.of m.

fori=sto2s—1

forj=i—-s+1tos~-1
(C.8 = t[0)+ alj1bli =
ADD((1],0) :
(C8) := S+ mlinli-
ol :=38
ADD@{11,C)

mli — s] =#{0]

[0} = #[1]

1] == 2]

H2):=0

An inspection of indices in the: seconid 4 loop shows that
the least significant s words of result u reside in variable m;
The most significant Bitis 1 £[0]; (Values 1 ‘and i[ ] are 0
at the'end.) ‘ .

The FIPS method requires 252 +5 multlphcanom 6 52 + 25
+ 2 additions, 9s? + 8s + 2 reads, andiss? +8s +
number of additions;‘réads; and wiites is somewhat mote
than for the previous methods; but the number of multipli- -
cations is the same. Nevercheless the method Has considers
able benefits on digital signal processors:i(Many of the reads
and writes are for the accutulator words, which may: be i .
registers.) The FIPS method requires's + 3 words of space.

Coarsely integrated hybrid scanning -
This method is a modification: of the’SOS tethod; illus-
trating yet another approach to Montgomery multiplication:.
As was shown, the SOS method requires 2s + 2:words to
store temporary variables # and m. Hete e shiow that it is
possible to use only 5 + 3 words of temporary space; with-
out changing the general flow of the algorithm: We call'it'a
hybrid-scanning method because it mixes the product-scan-
ning and operand-scanning forks" of multlphcanon
(Reduction occurs only in the operagid- scarmmg form.) First, -
we split the computation of abintoitwo loops The second:
loop shifts the 1ntermed1ate result ofie word at-a time at the -

1 wiites:The
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Figure 3. An iteration of the CIHS method for s = 4. The first i loop performs the accumulation of the right half of the
partial products of a x b (a). The first j loop of the second i loop adds n x m to t and shifts t + m x n (b); it also computes
the remaining words of the partial products of a x b (c). Each (PC,PS) pair is the sum of the columns connected with lines.

In the last j loop, the algorithm adds the (PC,PS) pair to t (b).

end of each iteration. '

Splitting the multiplication is possible because the aigo-
rithm computes m by multiplying the ith word of ¢ by ,".
Thus, we can simplify multiplication of ab by postponing
the word multiplications required for the most significant
half of ¢ to the second ¢ loop. We integrate the multiplication
loop into the second main i loop, computing one partial
product in each iteration. This reduces the space for the ¢
array from 2s + 1 words to s + 2 words. The first stage com-
putes (n - ) words of the jth partial product of b and adds
them to f. The following code performs this computation:

fori=0tos—1

C:=0

forj=0tos—i-1
(C.8) =tli +j]1 + aljlblil + C
Hi+jfl:=8

8 =tlsl+C

tlsl:=$

tls+1l:=C

This algorithm then interleaves multiplication mn with
addition ab + mn. It divides by r by shifting one word at a
time within the ¢ loop. Since m is one word long and prod-
uct mn + C is two words long, total sum ¢ + m#n needs at
most s + 2 words. Also note that after shifting, the algorithm
stores the carry to the sth word in the (s — Dth word. We
assume array £ to be set to 0 initially. :

fori=0tos~1
m = t[0]n’[0] mod W
(C,S) := t{0] + mnl0)

forj=1tos—1
€S =tljl + mnljl + C
ty - 1:=S
S =tlsl +C
tis-1]:=S5
tlsl:==tls+1]+C
tls +1]:=0

To compute m, this algorithm uses #; instead of ¢, as in the
original SOS algorithm. This is because it shifts ¢ in each iter-
ation. CIHS computes two excess words in the first loop and
uses them in the following j loop to compute the (s + dth
word of ab.

forj=i+lt0$-]
(G = tls — 11 + bljlals —j+ i

tls—-1]:=S
9 =tlsl+C
tls] =8
tls+1]1:=C

The last four lines of this segment compute the most sig-
nificant three words of # its (s — 1th, sth, and (s + Dth words.
This completes step 1 of MonPro(a,b). Next, the algorithm
subtracts # from ¢ if ¢ = n. Figure 3 illustrates the algorithm
for Montgomery multiplication of two four-word numbers.

Here, PC and PS denote the two extra words required to
obtain the correct (s + Hth word. Each (PC, PS) pair is the sum
of their respective words connected by dashed arrows in
Figure 3. As do the other algorithms, CIHS requires 2s* + s
multiplications. However, the number of additions decreas-
es to 4s? + 4s + 2. The number of reads is 6.55> + 6.5s + 2, and
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the number of writes is 3s? +:5s + 1. As:'we mentioned earli-
er, thisalgorithm requires s + 3 words of temporary space.

Comparison
The five algorithms.require the same number of smgle—
* precision multiplications: However, the number of additions,
reads, and writes are slightly different. There seems to be a
lower bound of 4s* + 4s + 2 for addition operations, which
the SOS and CIOS methods reach. Table 1 summarizes the
number of operations and amount of temporary space the
five methods require. We. calculated the total number of oper-
ations by counting each operation within a loop and multi-
plying this number by the iteration count. As.an example,
~Table 2 1ists this calculationforthe CIOS method.
The ADD(x[11,C) function; which implements operation

xlil:=xld] + C including the cairy propaganon requires;one

memory read (x[), one addition (x[4] +. €), and-one memo-
ry write (x[7]:=) during the first step. Considering the carry
propagation from this addition, on average the algorithm: per-
forms one additional memory read,-one addition, and one
memory write (in addition to branching and loop instructions):

Thus, in ouranalysis we count the ADD function as two mem- -

ory reads, two additions, and-two memory writes.

32 [EEE Micro

- by requires the ADD funcuon for: propagauon of

Table 1. Time and space requirements of the methods.
Method . -Multiplications Additions Reads .- Wirites Space
SOS 252+ 5 45 + 45+ 2 62+75+3 0 2+ 65+2 2542
ClOs 25°+s 452 + 45+ 2 652+ 75+2 252+ 55+ 1 S+3
FIOS 257+ s 552+ 3542 75* + 55+ 2 3s2+4s+1 s+3 :
FIPS 282 +s 652+ 25+ 2 952 + 85+ 2 582+ 8s+ 1 s+3 we counted loop overhead pomter
CIHS 258 +s 42 +4s+2  65524655+2- 32455+ 1 s+3 arithmetic, and the like; which will
i undoubtedly affect performance; - .
. » i * Toimeasuie the actual g
Table 2. Calculating the operations of the CIOS method. of these algorithms; we unplemented ¥
B - themin C and in Intel 386 CompaﬂbLe
Operation ) assembler code on an Intel Pentivmi 60
Statement Multiplications . Adds Reads Writes - Iterations Linux system. Table 3 suminarizes the <
timirigs of these rriethods fors=16,32,
foriz0tos—~1 — — - — — 48, and 64. Since w = 32; thesé corre-
C:=0 0 0 0 0 s spond to 512, 1,024, 1, /536, and 2,048
forj=0tos—1 — — — — — bits. The timing values given i Table; '
(C.S) = t[/] + bljlali] + c 1 2 3 0 s? 3 are in milliseconds, and:are the aver-
t] = : 0 0 - -0 - T s « ageiyalues  over-1:000 executions:
(C,S) = t[s} 0 1 -1 0%, s including the overhead of the Ioop that X
ts] == 0 0 -0 1 S .+ calls thie MonPro fungticn: T}
s + 1] = 0 0 0= 1 s +also contains the comp: ’«obect, code -
= t[O]n’[O] mod W 1 0 2 1 5 sizes:of each -algorithm, - which-are
(C,S) := 0] + mn[0] 1 1 3 0 s important when one: considers ‘the
forj=1tos—-1 — — — — — " principles of locality and instruction.:
(C,S) =1l + mn[jl+ C 1 2 C 3 0 s(s—1) cache size. (The* assembly - code;
ti—-1]:=5 : 0. 0 0 S ss=1) - labeled Asm, isfor the Intel 586 senes
(CS) :=ts]+C 0 1 1 0 s j oexploﬂmg part1cular-’ 3 g
Us=1]:=5 0 0 0 1 s | - Pentium may make furthér inr
tsl=ts+ 1]+ C 0 1 1 1o s tnents possible:) : .
Final subtraction 0 2s+ 1) 266+ 1) s+ 1 1 In the C version of the functlons
Total 25245 AP+ 4s+2  62+7s+2 282455+ 1 the algorithms fealize smgle precision
i - (32-bi): multiplications-by. dividing

“them jnto two . 16:bit words: The €
version \ of the funcuon has. moré overhead than, theassem:
bler version, which performs 32-bit mult1phcat10n, operations
using a single assembler instriction. We optimized the assem-
bler version of the ADD funciion to use one 32-bit register for
addition and a 32-bit registér for address 'computation. The
propagation of the carry uses the carry flag. : : .

The CIOS and FIOS methdds are: similar in thelr use of
embedded shifting and interleaving of products-a;b and mn,
The only difference is-that CIOS method uses-a «separate ] .
loop to compute partial product gb and’ th :
m, to this partial product in the succoedmg oop The'FIOS :
method combines the computation of pamal product a b and,
accumulation of a;b and mx, into a single jloop, 2 X

rate carries.

other Montgornery mulnphcanon algonthms espe
implemented in assembly language. However,
es'of processors, a different algorithin may. be‘ refer
For-instance, on 4 digital signal processor;- wehave often -
found:the FIPS method to be: better because explolts the
multiply-accumiulate archjtectire typ1cal of ‘ '
adding together a set of products. Sucharchitettures st



Table 3. Execution times for MonPro algorithms on a Pentium-60 Linux system.
Execution times (ms)

512 bits 1,024 bits 1,536 bits 2,048 bits Code size (bytes)
Method C Asm C Asm Asm C Asm C Asm
SOS 1.376 0.153 5<814‘ 0.869 13.243 2.217 23.567 3.968 1,084 1,144
Clos 1.249 0.122 5.706 0.799 12.898 1.883 23.079 3.304 1,512 1,164
FIOS 1.492 0.135 6.520 0.860 14.550 2.146 26.234 3.965 1,876 1,148
FIPS 1.587 0.149 6.886 0.977 15.780 2.393 27.716 4.310 2,832 1,236
CIHS 1.662 0.151 7.268 1.037 16.328 2.396 29.284 4.481 1,948 1,164

three words ¢ [0], £[1], and #[2] in a single hardware accu-

mulator, and can add product alj1b[é - ;] in the FIPS jloop.

directly to the accumulator. This makes the 7 loop very fast.

DEDICATED HARDWARE DESIGNS will have additional
trade-offs based on the extent to which they can parallelize
these methods. We do not make any recommendations here,
but refer the reader to Even’s description of a systolic array
as one example-of such a design.®

On a general-purpose processor, the CIOS algorithm is
probably best, as it is the simplest of all five methods and
requires fewer additions and fewer assignments than the
other four methods. CIOS requires only s + 3 words of tem-
porary space, which is just slightly more than half the space
required by the SOS algorithm.

Rigorous study of modular multiplication algorithms in terms
of their timing and space requirements is necessary for fast and
efficient implementations of public-key cryptographic algo-
rithms, especially those requiring modular exponentiation. In
this article, we concentrated on Montgomery multiplication.
Further study of related topics—for example, asymptotically
faster multiplication algorithms and approaches based on
lookup table techniques—will no doubt expand our knowl-
edge and help us-obtain those fast implementations. [i}
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