
Burton S. Kaliski, JL
ods can break into a senes of modular mul-

RSA Laboratories tiphcations? Certainly one of the most M

tlplicatlon algorithm, mtroduced by Peter L m

s the Montgomery produ

MonPro(a, b) = ab?-' mod n
methods constitute th

and Y such that the greatest
rmnator (E , r) = 1 Although
works for any r that is rela-

exponentzatzon, the

ssors and mcro-

signing dzgztal data in lar multiplication, but typically faster

cle, we study the operations

(mod n). The resulting number c in Equation 1 is indeed the
n residue of product c = ab (mod n), since

- _ _
c = a br-' (mod n)

= a r b - ' (mod n)
= CY (mod n)

To describe the Montgomery reduction algorithm, we need
an additional quantity, n', the integer with property
w-' - nn' = 1. We can compute both integers r-l and n'
with the extended Euclidean a lg~r i thm.~ We compute
MonPro(& 2) as follows:

function MonPro(z, 5)
Step 1. t := Z 2
Step 2. U := [t + (tn' mod r)nl/r
Step 3. if U 2 n then return U - n, else return U

Here t and U are temporary variables (multiprecision
unsigned integers). Multiplication modulo rand division by r
are both intrinsically fast operations, since r is a power of 2.
Thus, the Montgomery product algorithm is potentially faster
and simpler than ordinary computation of ab mod n, which
involves division by n. However, conversion from an ordinary
residue to an n residue, computation of n', and conversion
back to an ordinary residue are time-consuming tasks. Thus,
it is not a good idea to use the Montgomery product compu-
tation algorithm when only a single modular multiplication
will be performed. It is more suitable for cases requiring sev-
eral modular multiplications with respect to the same modu-
lus, as when one needs to compute modular exponentiation.

Using the binary method for computing the power^,^ we
replace the exponentiation operation with a series of square
and multiplication operations modulo n. Letj be the number
of bits in exponent e. The following exponentiation algorithm
is one way to compute x := ae mod n with qj) calls to the
Montgomery multiplication algorithm. Step 4 of the modular
exponentiation algorithm computes x using X via the proper-
ty of the Montgomery algorithm: MonPro(Z,l) = X. lr - ' =
xv-' = x mod n.

function ModExp(a,e,n)
Step 1. Z := a rmod n
Step 2. X := l r mod n
Step 3. for i = j - 1 downto 0

X := MonProCx, 3
if e, = 1 then X := MonPro(X, E)

Step 4. return x := MonPro(Z,l)

Typical implementations perform operations on large
numbers by breaking the numbers into words If w is the
computer's word size, we can think of a number as a
sequence of integers each represented in radix W = 2" If
these "multiprecision" numbers require swords in the radix
Wrepresentation, then we take r as r = 2'".

In the following sections, we will give several algorithms
that perform Montgomery multiplication MonPro(a,b), and
analyze their time and space requirements. We performed
time analysis by counting the total number of multiplications,

additions (and subtractions), and memory read and write
operations in terms of the input size parameters. For exam-
ple, we assume that operation

(C,S) = t[i+ j l + a[j lb[i l + C (2)

requires three memory reads, two additions, and one multi-
plication, since most microprocessors multiply two one-word
numbers, leaving the two-word result in one or two registers
(In some processors, additions may actually involve two
instructions each, since value a[jl b[il is double precision,
we ignore this distinction in our timing estimates)

We assume that multiprecision integers reside in memory
throughout the computations. Therefore, assignment oper-
ations performed within a routine correspond to read or
write operations between a register and memory We count-
ed these to calculate the proportion of the memory access
time in the total running time of the Montgomery multipli-
cation algorithm In our analysis, we did not take into
account loop establishment and index computations The
only registers we assume are available are those that hold
carry C and sum S as in Equation 2 (or equivalently, borrow
and difference for subtraction). Obviously, many micro-
processors have more registers, but this gives a first-order
approximation of the running time, sufficient for a general
comparison of the approaches. Actual implementation on
particular processors will give a more detailed comparison.

We performed the space analysis by counting the total
number of words used as the temporary space. However,
we did not take into account the space required to keep the
input and output values a, b, n, do, and U

The algorithms
There are a variety of ways to perform Montgomery mul-

tiplication, just as there are many ways to multiply. Our pur-
pose in this article is to give fairly broad coverage of the
alternatives.

Roughly speaking, we may organize the algorithms based
on two factors. The first factor is whether multiplication and
reduction are separated or integrated In the separated
approach, we first multiply a and b, then perform a
Montgomery reduction. In the integrated approach, we alter-
nate between multiplication and reduction This integraQon
can be either coarse or fine grained, depending on how often
we switch between multiplication and reduction (specifical-
ly, after processing an array of words, or after just one word).
There are implementation trade-offs between the alternatives

The second factor is the general form of the multiplication
and reduction steps One form is operand scanning, by which
an outer loop moves through one operands words. Another
form is product scanning, by which the loop moves through
words of the product itself The product- or operand-scan-
ning methods are independent of whether multiplication and
reduction steps are separated or integrated Moreover, it is
also possible for multiplication to take one form and reduc-

form, even in the integrated approach.
e, we describe the algorithms in this article as

operations on multiprecision numbers. Thus, it IS straight-
forward to rewrite the algorithms in an arbitrary rad=, for

June1996 27

j4/312/1/oj j = o

1413121110/) = I

/=2

7 - - - - - _ 7 6 5 4 3 2 1 0 t
(a) +

._._ 1,+41,+31,+21i+il i [- - - - : - o - - i t

tion t = ab (a); it then multiplies n', by each word of t t o find m (b); it obtains the
final result by adding the shifted nm t o t (c).

example, in binary or radix-4 form for hardware
Clearly, quite a few algorithms are possible, but we focus

here on five that are representative of the whole set, and that
for the most part have good implementabon characteristxs

finely integrated product scanning (FIPS), and
coarsely integrated hybrid scanning (CIHS)

Other possibilities are variants of one or more of these
five, we encourage the interested reader to constmct and
evaluate some of them. Two of the methods we analyze here
have been described previously SOS (as Improvement 1 in
Dusse and Kaliski') and FIPS The other three, while sug-
gested by previous work, have not been described in detail

analyzed in comparison with the others

operand scanning
In this method we first compute the product ab using

t[z + SI = c

finally divide it by r = 2=, which we accomplish by ignoring
m = tn' mod r, and the reduc-

tion process proceeds word by word, we can use n,'= n' mod

28 IEEEMicro

further carry. The

t to 2s words an

words.

most cases is to defin
than the modulus n

We then divide th
ignoring the lower s

Finally we obtain the

lowing code:

f o r z = O t o s - 1

if 3 = 0 then retu

A brief inspection of the SOS method, based on our tech-
niques for counting the number of operations, shows that it
requires 2s’ + s multiplications, 4s’ + 4s + 2 additions, 6.9 +
7s + 3 reads, and 2s’ + 6s + 2 writes. (Later we discuss how
to count the number of operations the ADD function
requires.) Furthermore, the SOS method requires a total of
2s + 2 words for temporary results, which store the (2s + 1)-
word array t and the one-word variable m. Figure 1 illus-
trates the SOS method fors = 4.

We define n,’ as the inverse of the least significant word
of n modulo P-that is, n’, = -n[l (mod 29 . We can com-
pute it using a very simple algorithm from Duss6 and Kali~ki.~
Furthermore, the reason for separating the product compu-
tation ab from the rest of the steps for computing U is that
when a = b, we can optimize the Montgomery multiplica-
tion algorithm for squaring. This optimization allows us to
skip almost half the single-precision multiplications, since
atal = ala,. To perform optimized Montgomery squaring, we
replace the first part of the Montgomery multiplication algo-
rithm with the following simple code:

for i = 0 to s - 1
(cy) := t[i + il + a[iIa[il
f o r j = i + 1 to s - 1

(C,S) := t [i +jl + 2a[jla[il + C
t[i +j1 := s

t[i + SI := c

One tricky part here is that value 2a[jIa[il requires more
than two words for storage. If the C value does not have an
extra bit, one way to deal with this is to rewrite the loop to add
the a[j la[i] terms first, without multiplication by 2. The algo-
rithm can then double the result and add in the a[i] a[il terms.
While we analyze only the Montgomery multiplication algo-
rithms, readers can analyze Montgomery squaring similarly.

Coarsely integrated operand scanning
CIOS improves on SOS by integrating the multiplication

and reduction steps. Specifically, instead of computing the
entire product ab and then reducing, it alternates between
iterations of the outer loops for multiplication and reduction.
This is possible because the value of m in the ith iteration of
the outer loop for reduction depends only on value t[il, which
is completely computed by the ith iteration of the outer loop
for multiplication. This leads to the following algorithm:

for i = 0 to s - 1
c.= 0
for j = 0 to s - 1

(CJ) := t[jl + a[jIb[il + C
t[Jl := s

(C,S> := t[sI + c
t[sl := s
t [S + 11 ‘= c
c:=o
m : = t [Oln’[OI mod W
forj = 0 to s - 1

(C,S) := t[jl + mn[jl + C
tljl := S

(CJ) .= t[sl + c
t[sl := s
t [s + 11 := t [s + 11 + c
f o r j = 0 to s

t[jl := t [j + 11

We assume array t to be set to 0 initially. The lastj loop shifts
the result one word to the right (that is, division by PI-
hence the references to djl and dol instead of d i + fi and dil.
For a slight improvement, we integrate the shifting into the
reduction as follows:

m := t[Oln’[Ol mod W
(CJ) .= tlol + mn[ol
f o r j = 1 to s - 1

(CJI := tu1 + mnbl + C
tu - 11 := s

(C,S) := l[Sl + c
tis - 11 := s
t[sI := tis + 11 + c

Auxiliary array t uses only s + 2 words. This is due to fact
that the shifting occurs one word at a time, rather than s
words at once, saving s - 1 words. The final result is in the
firsts + 1 words of array t. A related method, which doesn’t
shift the array (and hence has a greater memory require-
ment), is DussC and Kaliski’s Improvement 2.7

The CIOS method (with the slight improvement) requires
2s’ + s multiplications, 4sz + 4s + 2 additions, 6s’ + 7s + 2
reads, and 2sZ + 5s + 1 writes, including the final multipreci-
sion subtraction. It uses s + 3 words of memory space, a sig-
nificant improvement over the SOS method.

We say that the integration in this method is coarse because
it alternates between iterations of the outer loop. The next
method alternates between iterations of the inner loop.

Finely integrated operand scanning
FIOS integrates the two inner loops of the CIOS method

into one by computing the multiplications and additions in
the same loop. The algonthm computes multiplications arb2
and mn] in the same loop and then adds them to form the
final t. In this case, the algorithm must compute to before
entering the loop, since m depends on this value. This cor-
responds to unrolling the first iteration of the loop fori = 0.

f o r i = O t o s - 1

ADD(t [11,0
m := S nTO1 mod W

(C,S> := t[OI + a[OIb[il

(cy) := s + mn[Ol

The algorithm computes partial products of ab one by one
for each value of i, then adds mn to the partial product. It
then shifts this sum right one word, making t ready for the
next i iteration.

f o r j = 1 to s - 1
(CJ) := trj1 + a[jlb[il + c
ADD(t[j + 11,0

June 1996 29

Figure 2. An iteration of the FIOS method. The computa-
tion of partial product tC0 = a x b, (a) enables computation
of m(0 in that iteration The algorithm then finds an inter-
mediate result e+') by adding n x m(0 to this partial prod-
uct (b).

(CJ) = s + mn[13
t [j - 11 = s

(CJ) = t[sI Jr c
t [s - 11 = s
t [s] '= tis + 11 + c
t [s + 11 = 0

This method differs fro 10s in that it has only one inner
loop Figure 2 illustrates the algorithm fors = 4. FIOS requires
the ADD function in the inner] loop, since there are two dis-
tinct carries one drisrng from the multiplication of al b, and
the other from the multiplication of mn, Thus, the require-
ment of the ADD function counterbalances the benefit of
having only one loop We assume array t to be set to 0

including the final mult
s2 more additions, wri

subtraction. (This is about
eads than CIOS uses) It

f temporary space

scanning form The method keeps the values of m and U in
the same sword array m (KaliskP described this method,
which is related to Impiovement 3 in DussC and Kal~ski.~)
The fiist loop (following this paragraph) computes one part
of product ab and then adds mn to it The three-word array
t-that is, t[Ol, t[11, t[2]-functions as the partial-product
accumulator for produc a three-

(sW(W- 1)) = 2 + log, dify the
algorithm to handle a larger accuinulator)

word array assumes tha ed log,

f o r z = O t o s - l
fori = 0 to z - 1

(C,S> = l [Ol + a[11btz -11

1

30 /€€€Micro

Thts loop comput

occur one word at a
t to be set to 0 initia

The second z loop

space of m.

for z = s to 2s - 1
fori = z - s + 1 to s - 1

(17,s) = t[Ol + aIilb[t - j l

at the end.)
Tne FIPS meth

+ 2 additions, 3s2
number of addit

able benefits on
and writes are fo

trating yet another appr
As was shown, the SOS
store temporary variable

i = o

WPS i = l

SHR t"), 1 w

+

Figure 3. An iteration of the CIHS method fors = 4. The first i loop performs the accumulation of the right half of the
partial products of a x b (a). The firstj loop of the second i loop adds n x m to t and shifts t + m x n (b); it also computes
the remaining words of the partial products of a x b (c). Each (PC,PS) pair is the sum of the columns connected with lines.
In the last j loop, the algorithm adds the (PC,PS) pair to P" (b).

end of each iteration.
Splitting the multiplication is possible because the algo-

rithm computes m by multiplying the ith word of t by n,,'.
Thus, we can simplify multiplication of ab by postponing
the word multiplications required for the most significant
half o f t to the second i loop. We integrate the multiplication
loop into the second main i loop, computing one partial
product in each iteration. This reduces the space for the t
array from 2s + 1 words to s + 2 words The first stage com-
putes (n -1) words of thejth partial product of ab and adds
them to 2. The following code performs this computation:

for i = 0 to s - 1
c:= 0
f o r j = O t o s - i - 1

(C,S> := t[i + j l + a[jlb[zl + c
t[z + / I := s

(C,Sj := tIs1 + c
t[sl := s
t [s + 11 := c

This algorithm then interleaves multiplication mn with
addition ab + mn. It divides by r by shifting one word at a
time within the z loop Since m is one word long and prod-
uct mn + C is two words long, total sum t + mn needs at
most s + 2 words. Also note that after shifting, the algorithm
stores the carry to the sth word in the (s - 1)th word. We
assume array t to be set to 0 initially.

for i = 0 to s - 1
m := t[01n'[01 mod W
(C,S) := t[Ol + mn[Ol

f o r j = 1 to s - 1
(C,S) := t[j] + mn[j] + C
t [j - 11 := s

(CJj := t[sl + c
t[s - 11 := s
t[sl := tis + 11 + c
t[s + 11 := 0

To compute m, this algorithm uses to instead oft,, as in the
original SOS algorithm. This is because it shifts t in each iter-
ation. CIHS computes two excess words in the first loop and
uses them in the following j loop to compute the (s + ijth
word of ab.

f o r j = i + 1 to s - 1
(C,S) := t [s - 11 + b[jla[s - j + il
t [s - 11 := s
(C,S) := t[sl + c
t[sl := s
t [s + 11 .= c

The last four lines of this segment compute the most sig-
nificant three words of t. its (s - llth, sth, and (s + 1 jth words.
This completes step 1 of MonPro(a,b). Next, the algorithm
subtracts n from t if t 2 n. Figure 3 illustrates the algorithm
for Montgomery multiplication of two four-word numbers.

Here, PC and PS denote the two extra words required to
obtain the correct (s + i)th word. Each (PC, PS) pair is the sum
of their respective words connected by dashed arrows in
Figure 3. As do the other algorithms, CIHS requires 2 9 + s
multiplications. However, the number of additions decreas-
es to 49 + 4s + 2. The number of reads is 6.59 + 6 5s + 2, and

June1996 31

4 s 2 + 4 s + 2 6 s 2 + 7 5 + 2 2 s 2 + 5 s + l s + 3
5 s 2 + 3 s + 2 7s2+5s+2 3 s 2 + 4 s + 1 s + 3
6 s 2 + 2 s + 2 9sZ+8s+2 5s2+8s+1 s + 3
4 s 2 + 4 s + 2 65s2+65s+2 3 s 2 + 5 s + l s + 3

- - - - f o r i = 0 t o s - 1 -

c = o 0 0 0 0 5

fo r i = 0 to 5 - 1 - -

(C,S) = t l j + b[/la[i] + C 1 2 3 0 8 2

tb1 = s 0 0 0 1 5 2

(C,S) = t[s] + c 0 1 1 0 8

t[sl ’= s 0 0 0 1 8

t[s+ I] = c 0 0 0 1 8

m = t[O]n’[O] mod W 1 0 2 1 S

(C,9 = t[O]+ mn[Ol 1 1 3 0 S
fo r i = 1 to s - 1 - -

- - -

- - -

(C,S) = tljl + mnbl+ c 1 2 3 0 s(s - 1)
tk-11 = 5 0 0 0 1 $8-1)

(CJ) = tis] + c 0 ‘ 1 1 0 S

t [s - l] = 5 0 0 0 1 8

t[51 = t[5 + 1] + c 0 1 1 1 8

Final subtraction 0 2(s+ 1) 2(s+ 1) s + 1 1
Total 2s2+s 4s2+4s+2 69+7s+2 2sz+!%+1

the number of writes is 3 2 + 5s + 1 As we mentioned earli-
er, this algoiithm requires s + 3 words of temporary spate.

Comparison
The five algorithms require the same number of single-

precision multiplications However, the number of additions,
reads, and writes are slightly drfferent There seems to be a
lower bound of 42 + 4s + 2 for additlon operations, which
the SOS and CIOS methods reach Table 1 summarizes the
number of operations and amount of temporary space the
five inethods require. We calculated the total number of oper-

forms one additio

32 IEEE Micro

version of the functi
bler version, whch pe

addition and a 32-bit regis
propagation of the carry us

The CIOS and FIOS me

rate carries

I I Table 3. Execution times for MonPro algorithms on a Pentium-60 Linux system.

512 bits 1,024 bits 1,536 bits 2,048 bits Code size (bytes)
C Asm C Asm 1 Execution times (ms)

Method C Asm C Asm C Asm

SOS 1.376 0 153 5.814 0.869 13243 2.217 23.567 3968 1,084 1,144
1,512 1,164 ClOS 1249 0.122 5 706 0.799 12 898 1883

FlOS 1492 0135 6 5 2 0 0 8 6 0 14.550 2 146 26.234 3965 1,876 1,148
FlPS 1.587 0149 6.886 0.977 15 780 2.393 27716 4.310 2,832 1,236
ClHS 1662 0.151 7268 1.037 16328 2 396 29284 4481 1,948 1,164

23079 3 3 0 4

three words t [O I , tlll , and t[21 in a single hardware accu-
mulator, and can add product a[jlb[z -11 in the FIPSjloop
directly to the accumulator. This makes the] loop very fast.

DEDICATED HARDWARE DESIGNS will have additional
trade-offs based on the extent to which they can parallelize
these methods We do not make any recommendations here,
but refer the reader to Even’s descnption of a systolic array
as one example of such a design

On a general-purpose processor, the CIOS algorithm is
probably best, as it is the simplest of all five methods and
requires fewer additions and fewer assignments than the
other four methods CIOS requires only s + 3 words of tem-
porary space, which is just slightly more than half the space
required by the SOS algorithm

Fbgorous study of modular muhplication algorithms in terms
of thelr timng and space requlrenients is necessary for fast and
efficient implementations of public-key cryptographic algo-
rithms, especially those requiring modular exponenbation In
this article, we concentrated on Montgomery multiplication
Further study of related topics-for example, asymptotically
faster multiplication algorithms and approaches based on
lookup table techniques-will no doubt expand our knowl-
edge and help us obtain those fast mplementahons

Acknowledgments
NSF Grant ECS-9312240, Intel Corporation, and RSA Data

Security, Inc. supported Setin Kaya Kog and Tolga Acar in
this research.

References
R L Rivest, A Shamir, and L Adleman, “A Method for Obtain-
ing Digital Signatures and Public-Key Cryptosystems,” Comm
ACM, Vol 21, No 2, Feb 1978, pp 120-1 26
W. Diffie and M E Hellman, ”New Directions in Cryptography,”
IEEE Trans Information Theory, Vol 22, Nov 1976, pp 644-654
D E Knuth, The Ar t o f Computer Programming Seminumeri-
cal Algorithms. Vol 2, Addison-Wesley, Reading, Mass , 2nd
ed, 1981
P L Montgomery, ”Modular Multiplication without Trial Divi-
sion,” Mathematfcs of Computatfon, Vol 44, No 170, Apr

D Naccache, D M‘Raihi, and D Raphaeli, “Can Montgomery
1985, pp 51 9-52 1

Parasites Be Avoided’ A Design Methodology Based on Key and
Cryptosystem Modifications,“ Designs, Codes and Cryptogra-
phy, Vol 5, No 1, Jan 1995, pp 73-80
B S Kaliski, Jr , “The 2801 80 and Big-Number Arithmetic,” Dr
Dobb‘s I , Sept 1993, pp 50-58
S R Dusse and B S Kaliski, Jr , ”A Cryptographic Libraryfor the
Motorola DSP56000, ‘I Advances in Cryptology-Eurocrypt 90,
Lecture Notes in Computer Science, No 473, I B Damgaard,
ed , Springer-Verlag, New York, 1990, pp 230-244
S Even, ”Systolic Modular Multiplication,” Advances in Clyp-
tology--Crypt0 90 Proc., Lecture Notes in Computer Science,
No 537, A J Menezes and S A Vanstone, eds , Springer-Verlag,
New York, 1991, pp 61 9-624

Getin Kaya Kos is an associate profes-
sor of electrical and computer
ing at Oregon State Unive
research interests are in comp
metic, data security, and cryptography.
Currently his research is supported by the
Internet Technology Laboratory of Intel

Corporation, where he is developing high-performance cryp-
tographic libraries for Intel’s processors. He has been an
associate of RSA Laboratories. Kog received his PhD
the University of California, Santa Barbara.

Tolga Acar is a PhD student in the
Electrical and Computer Engineering
Department of Oregon State University.
His research interests include cryptogra-
phy, computer and network security, and
operating systems

Acar received BS and MS degrees in
control and computer engineering from Istanbul Technical
University He is a student member of the IEEE and IACR.

Burton S . Kaliski, Jr.’s biography and photograph appear
in the Guest Editors’ Introduction, p 13

Direct questions concerning this article to Setin Kaya Kog,
Depattment of Electrical and Computer Engineering, Oregon
State University, ECE 220, Corvallis, OR 97331-3211;
koc@ece.orst.edu.

June1996 33

mailto:koc@ece.orst.edu

