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(mod n). The resulting number c in Equation 1 is indeed the 
n residue of product c = ab (mod n), since 

- _ _  
c = a br-' (mod n) 

= a r b - '  (mod n) 
= CY (mod n) 

To describe the Montgomery reduction algorithm, we need 
an additional quantity, n', the integer with property 
w-' - nn' = 1. We can compute both integers r-l and n' 
with the extended Euclidean a lg~r i thm.~  We compute 
MonPro(& 2) as follows: 

function MonPro(z, 5) 
Step 1. t := Z 2  
Step 2. U := [t + (tn' mod r)nl/r 
Step 3. if U 2 n then return U - n, else return U 

Here t and U are temporary variables (multiprecision 
unsigned integers). Multiplication modulo rand division by r 
are both intrinsically fast operations, since r is a power of 2. 
Thus, the Montgomery product algorithm is potentially faster 
and simpler than ordinary computation of ab mod n, which 
involves division by n. However, conversion from an ordinary 
residue to an n residue, computation of n', and conversion 
back to an ordinary residue are time-consuming tasks. Thus, 
it is not a good idea to use the Montgomery product compu- 
tation algorithm when only a single modular multiplication 
will be performed. It is more suitable for cases requiring sev- 
eral modular multiplications with respect to the same modu- 
lus, as when one needs to compute modular exponentiation. 

Using the binary method for computing the  power^,^ we 
replace the exponentiation operation with a series of square 
and multiplication operations modulo n. Letj be the number 
of bits in exponent e. The following exponentiation algorithm 
is one way to compute x := ae mod n with qj) calls to the 
Montgomery multiplication algorithm. Step 4 of the modular 
exponentiation algorithm computes x using X via the proper- 
ty of the Montgomery algorithm: MonPro(Z,l) = X. lr - '  = 
xv-' = x mod n. 

function ModExp(a,e,n) 
Step 1. Z := a rmod  n 
Step 2.  X := l r  mod n 
Step 3. for i = j -  1 downto 0 

X := MonProCx, 3 
if e, = 1 then X := MonPro(X, E) 

Step 4. return x := MonPro(Z,l) 

Typical implementations perform operations on large 
numbers by breaking the numbers into words If w is the 
computer's word size, we can think of a number as a 
sequence of integers each represented in radix W = 2" If 
these "multiprecision" numbers require swords in the radix 
Wrepresentation, then we take r as r = 2'". 

In the following sections, we will give several algorithms 
that perform Montgomery multiplication MonPro(a,b), and 
analyze their time and space requirements. We performed 
time analysis by counting the total number of multiplications, 

additions (and subtractions), and memory read and write 
operations in terms of the input size parameters. For exam- 
ple, we assume that operation 

(C,S) = t[i+ j l  + a[j lb[i l  + C (2 )  

requires three memory reads, two additions, and one multi- 
plication, since most microprocessors multiply two one-word 
numbers, leaving the two-word result in one or two registers 
(In some processors, additions may actually involve two 
instructions each, since value a[jl  b[il is double precision, 
we ignore this distinction in our timing estimates ) 

We assume that multiprecision integers reside in memory 
throughout the computations. Therefore, assignment oper- 
ations performed within a routine correspond to read or 
write operations between a register and memory We count- 
ed these to calculate the proportion of the memory access 
time in the total running time of the Montgomery multipli- 
cation algorithm In our analysis, we did not take into 
account loop establishment and index computations The 
only registers we assume are available are those that hold 
carry C and sum S as in Equation 2 (or equivalently, borrow 
and difference for subtraction). Obviously, many micro- 
processors have more registers, but this gives a first-order 
approximation of the running time, sufficient for a general 
comparison of the approaches. Actual implementation on 
particular processors will give a more detailed comparison. 

We performed the space analysis by counting the total 
number of words used as the temporary space. However, 
we did not take into account the space required to keep the 
input and output values a, b, n, do, and U 

The algorithms 
There are a variety of ways to perform Montgomery mul- 

tiplication, just as there are many ways to multiply. Our pur- 
pose in this article is to give fairly broad coverage of the 
alternatives. 

Roughly speaking, we may organize the algorithms based 
on two factors. The first factor is whether multiplication and 
reduction are separated or integrated In the separated 
approach, we first multiply a and b, then perform a 
Montgomery reduction. In the integrated approach, we alter- 
nate between multiplication and reduction This integraQon 
can be either coarse or fine grained, depending on how often 
we switch between multiplication and reduction (specifical- 
ly, after processing an array of words, or after just one word). 
There are implementation trade-offs between the alternatives 

The second factor is the general form of the multiplication 
and reduction steps One form is operand scanning, by which 
an outer loop moves through one operands words. Another 
form is product scanning, by which the loop moves through 
words of the product itself The product- or operand-scan- 
ning methods are independent of whether multiplication and 
reduction steps are separated or integrated Moreover, it is 
also possible for multiplication to take one form and reduc- 

form, even in the integrated approach. 
e, we describe the algorithms in this article as 

operations on multiprecision numbers. Thus, it IS straight- 
forward to rewrite the algorithms in an arbitrary rad=, for 
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tion t = ab (a); it then multiplies n', by each word of t t o  find m (b); it obtains the 
final result by adding the shifted nm t o  t (c). 

example, in binary or radix-4 form for hardware 
Clearly, quite a few algorithms are possible, but we focus 

here on five that are representative of the whole set, and that 
for the most part have good implementabon characteristxs 

finely integrated product scanning (FIPS), and 
coarsely integrated hybrid scanning (CIHS) 

Other possibilities are variants of one or more of these 
five, we encourage the interested reader to constmct and 
evaluate some of them. Two of the methods we analyze here 
have been described previously SOS (as Improvement 1 in 
Dusse and Kaliski') and FIPS The other three, while sug- 
gested by previous work, have not been described in detail 

analyzed in comparison with the others 

operand scanning 
In this method we first compute the product ab using 

t[z  + SI = c 

finally divide it by r = 2=, which we accomplish by ignoring 
m = tn' mod r, and the reduc- 

tion process proceeds word by word, we can use n,'= n' mod 
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A brief inspection of the SOS method, based on our tech- 
niques for counting the number of operations, shows that it 
requires 2s’ + s multiplications, 4s’ + 4s + 2 additions, 6.9 + 
7s + 3 reads, and 2s’ + 6s + 2 writes. (Later we discuss how 
to count the number of operations the ADD function 
requires.) Furthermore, the SOS method requires a total of 
2s + 2 words for temporary results, which store the (2s + 1)- 
word array t and the one-word variable m. Figure 1 illus- 
trates the SOS method fors = 4. 

We define n,’ as the inverse of the least significant word 
of n modulo P-that is, n’, = -n[l (mod 29 .  We can com- 
pute it using a very simple algorithm from Duss6 and Kali~ki.~ 
Furthermore, the reason for separating the product compu- 
tation ab from the rest of the steps for computing U is that 
when a = b, we can optimize the Montgomery multiplica- 
tion algorithm for squaring. This optimization allows us to 
skip almost half the single-precision multiplications, since 
atal = ala,. To perform optimized Montgomery squaring, we 
replace the first part of the Montgomery multiplication algo- 
rithm with the following simple code: 

for i = 0 to s - 1 
(cy) := t[i + il + a[iIa[il 
f o r j  = i + 1 to s - 1 

(C,S) := t [ i  +jl + 2a[jla[il + C 
t[i +j1 := s 

t[i + SI := c 

One tricky part here is that value 2a[jIa[il requires more 
than two words for storage. If the C value does not have an 
extra bit, one way to deal with this is to rewrite the loop to add 
the a[j la[i]  terms first, without multiplication by 2.  The algo- 
rithm can then double the result and add in the a[  i] a[il terms. 
While we analyze only the Montgomery multiplication algo- 
rithms, readers can analyze Montgomery squaring similarly. 

Coarsely integrated operand scanning 
CIOS improves on SOS by integrating the multiplication 

and reduction steps. Specifically, instead of computing the 
entire product ab and then reducing, it alternates between 
iterations of the outer loops for multiplication and reduction. 
This is possible because the value of m in the ith iteration of 
the outer loop for reduction depends only on value t[il, which 
is completely computed by the ith iteration of the outer loop 
for multiplication. This leads to the following algorithm: 

for i = 0 to s - 1 
c.= 0 
for j  = 0 to s - 1 

(CJ) := t[jl + a[jIb[il + C 
t[Jl := s 

(C,S> := t[sI + c 
t[sl := s 
t [ S  + 11 ‘= c 
c:=o 
m : = t [ Oln’[OI mod W 
forj  = 0 to s - 1 

(C,S) := t[jl + mn[jl + C 
tljl := S 

(CJ) .= t[sl + c 
t[sl := s 
t [ s  + 11 := t [ s  + 11 + c 
f o r j  = 0 to s 

t[jl := t [ j  + 11 

We assume array t to be set to 0 initially. The lastj loop shifts 
the result one word to the right (that is, division by PI- 
hence the references to djl and dol instead of d i  + fi and dil. 
For a slight improvement, we integrate the shifting into the 
reduction as follows: 

m := t[Oln’[Ol mod W 
(CJ) .= tlol + mn[ol 
f o r j  = 1 to s - 1 

(CJI := tu1 + mnbl + C 
tu -  11 := s 

(C,S) := l[Sl + c 
tis - 11 := s 
t[sI := tis + 11 + c 

Auxiliary array t uses only s + 2 words. This is due to fact 
that the shifting occurs one word at a time, rather than s 
words at once, saving s - 1 words. The final result is in the 
firsts + 1 words of array t. A related method, which doesn’t 
shift the array (and hence has a greater memory require- 
ment), is DussC and Kaliski’s Improvement 2.7 

The CIOS method (with the slight improvement) requires 
2s’ + s multiplications, 4sz + 4s + 2 additions, 6s’ + 7s + 2 
reads, and 2sZ + 5s + 1 writes, including the final multipreci- 
sion subtraction. It uses s + 3 words of memory space, a sig- 
nificant improvement over the SOS method. 

We say that the integration in this method is coarse because 
it alternates between iterations of the outer loop. The next 
method alternates between iterations of the inner loop. 

Finely integrated operand scanning 
FIOS integrates the two inner loops of the CIOS method 

into one by computing the multiplications and additions in 
the same loop. The algonthm computes multiplications arb2 
and mn] in the same loop and then adds them to form the 
final t. In this case, the algorithm must compute to before 
entering the loop, since m depends on this value. This cor- 
responds to unrolling the first iteration of the loop fori  = 0. 

f o r i = O t o s - 1  

ADD(t [11,0 
m := S nTO1 mod W 

(C,S> := t[OI + a[OIb[il 

(cy) := s + mn[Ol 

The algorithm computes partial products of ab one by one 
for each value of i, then adds mn to the partial product. It 
then shifts this sum right one word, making t ready for the 
next i iteration. 

f o r j  = 1 to s - 1 
(CJ) := trj1 + a[jlb[il + c 
ADD(t[j  + 11,0 
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Figure 2. An iteration of the FIOS method. The computa- 
tion of partial product tC0 = a x b, (a) enables computation 
of m(0 in that iteration The algorithm then finds an  inter- 
mediate result e+') by adding n x m(0 to this partial prod- 
uct (b). 

(CJ) = s + mn[13 
t [ j  - 11 = s 

(CJ) = t[sI Jr c 
t [ s  - 11 = s 
t [ s ]  '= tis + 11 + c 
t [ s  + 11 = 0 

This method differs fro 10s in that it has only one inner 
loop Figure 2 illustrates the algorithm fors = 4. FIOS requires 
the ADD function in the inner] loop, since there are two dis- 
tinct carries one drisrng from the multiplication of al b, and 
the other from the multiplication of mn, Thus, the require- 
ment of the ADD function counterbalances the benefit of 
having only one loop We assume array t to be set to 0 
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scanning form The method keeps the values of m and U in 
the same sword array m (KaliskP described this method, 
which is related to Impiovement 3 in DussC and Kal~ski.~) 
The fiist loop (following this paragraph) computes one part 
of product ab and then adds mn to it The three-word array 
t-that is, t[Ol, t[  11, t[2]-functions as the partial-product 
accumulator for produc a three- 

(sW(W- 1)) = 2 + log, dify the 
algorithm to handle a larger accuinulator ) 

word array assumes tha ed log, 

f o r z = O t o s - l  
fori  = 0 to z -  1 

(C,S> = l [Ol  + a[11btz -11 

1 

30 /€€€Micro 

Thts loop comput 

occur one word at a 
t to be set to 0 initia 

The second z loop 

space of m. 

for z = s to 2s - 1 
fori  = z - s  + 1 to s -  1 

(17,s) = t[Ol + aIilb[t - j l  

at the end.) 
Tne FIPS meth 

+ 2 additions, 3s2 
number of addit 

able benefits on 
and writes are fo 

trating yet another appr 
As was shown, the SOS 
store temporary variable 



i = o  

WPS i = l  

SHR t"), 1 w 

+ 

Figure 3. An iteration of the CIHS method fors = 4. The first i loop performs the accumulation of the right half of the 
partial products of a x b (a). The firstj loop of the second i loop adds n x m to t and shifts t + m x n (b); it also computes 
the remaining words of the partial products of a x b (c). Each (PC,PS) pair is the sum of the columns connected with lines. 
In the last j loop, the algorithm adds the (PC,PS) pair to P" (b). 

end of each iteration. 
Splitting the multiplication is possible because the algo- 

rithm computes m by multiplying the ith word of t by n,,'. 
Thus, we can simplify multiplication of ab by postponing 
the word multiplications required for the most significant 
half o f t  to the second i loop. We integrate the multiplication 
loop into the second main i loop, computing one partial 
product in each iteration. This reduces the space for the t 
array from 2s + 1 words to s + 2 words The first stage com- 
putes (n  -1) words of thejth partial product of ab and adds 
them to 2. The following code performs this computation: 

for i = 0 to s - 1 
c:= 0 
f o r j = O t o s - i - 1  

(C,S> := t[i + j l  + a[jlb[zl + c 
t[z + / I  := s 

(C,Sj := tIs1 + c 
t[sl := s 
t [ s  + 11 := c 

This algorithm then interleaves multiplication mn with 
addition ab + mn. It divides by r by shifting one word at a 
time within the z loop Since m is one word long and prod- 
uct mn + C is two words long, total sum t + mn needs at 
most s + 2 words. Also note that after shifting, the algorithm 
stores the carry to the sth word in the (s - 1)th word. We 
assume array t to be set to 0 initially. 

for i  = 0 to s - 1 
m := t[01n'[01 mod W 
(C,S) := t[Ol + mn[Ol 

f o r j  = 1 to s - 1 
(C,S) := t[j] + mn[j] + C 
t [ j  - 11 := s 

(CJj := t[sl + c 
t[s  - 11 := s 
t[sl := tis + 11 + c 
t[s  + 11 := 0 

To compute m, this algorithm uses to instead oft,, as in the 
original SOS algorithm. This is because it shifts t in each iter- 
ation. CIHS computes two excess words in the first loop and 
uses them in the following j loop to compute the (s + ijth 
word of ab. 

f o r j  = i + 1 to s - 1 
(C,S) := t [ s  - 11 + b[jla[s - j +  il 
t [ s  - 11 := s 
(C,S) := t[sl + c 
t[sl := s 
t [ s  + 11 .= c 

The last four lines of this segment compute the most sig- 
nificant three words of t. its (s - llth, sth, and (s + 1 jth words. 
This completes step 1 of MonPro(a,b). Next, the algorithm 
subtracts n from t if t 2 n. Figure 3 illustrates the algorithm 
for Montgomery multiplication of two four-word numbers. 

Here, PC and PS denote the two extra words required to 
obtain the correct (s + i)th word. Each (PC, PS) pair is the sum 
of their respective words connected by dashed arrows in 
Figure 3. As do the other algorithms, CIHS requires 2 9  + s 
multiplications. However, the number of additions decreas- 
es to 49 + 4s + 2. The number of reads is 6.59 + 6 5s + 2, and 
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4 s 2 + 4 s + 2  6 s 2 + 7 5 + 2  2 s 2 + 5 s + l  s + 3  
5 s 2 + 3 s + 2  7s2+5s+2 3 s 2 + 4 s + 1  s + 3  
6 s 2 + 2 s + 2  9sZ+8s+2 5s2+8s+1 s + 3  
4 s 2 + 4 s + 2  65s2+65s+2 3 s 2 + 5 s + l  s + 3  

- - - - f o r i =  0 t o s -  1 - 

c = o  0 0 0 0 5 

fo r i  = 0 to 5 - 1 - - 

(C,S) = t l j  + b[/la[i] + C 1 2 3 0 8 2  

tb1 = s 0 0 0 1 5 2  

(C,S) = t[s] + c 0 1 1 0 8 

t[sl ’= s 0 0 0 1 8 

t[s+ I ]  = c 0 0 0 1 8 

m = t[O]n’[O] mod W 1 0 2 1 S 

(C,9 = t[O]+ mn[Ol 1 1 3 0 S 
fo r i  = 1 to s - 1 - - 

- - - 

- - - 

(C,S) = tljl + mnbl+ c 1 2 3 0 s(s - 1) 
tk-11 = 5  0 0 0 1 $8-1) 

(CJ) = tis] + c 0 ‘ 1  1 0 S 

t [ s - l ]  = 5  0 0 0 1 8 

t[51 = t[5 + 1 ] + c 0 1 1 1 8 

Final subtraction 0 2(s+ 1 )  2(s+ 1) s +  1 1 
Total 2s2+s 4s2+4s+2 69+7s+2 2sz+!%+1 

the number of writes is 3 2  + 5s + 1 As we mentioned earli- 
er, this algoiithm requires s + 3 words of temporary spate. 

Comparison 
The five algorithms require the same number of single- 

precision multiplications However, the number of additions, 
reads, and writes are slightly drfferent There seems to be a 
lower bound of 42 + 4s + 2 for additlon operations, which 
the SOS and CIOS methods reach Table 1 summarizes the 
number of operations and amount of temporary space the 
five inethods require. We calculated the total number of oper- 

forms one additio 
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I I Table 3. Execution times for MonPro algorithms on a Pentium-60 Linux system. 

512 bits 1,024 bits 1,536 bits 2,048 bits Code size (bytes) 
C Asm C Asm 1 Execution times (ms) 

Method C Asm C Asm C Asm 

SOS 1.376 0 153 5.814 0.869 13243 2.217 23.567 3968 1,084 1,144 
1,512 1,164 ClOS 1249 0.122 5 706 0.799 12 898 1883 

FlOS 1492 0135 6 5 2 0  0 8 6 0  14.550 2 146 26.234 3965 1,876 1,148 
FlPS 1.587 0149 6.886 0.977 15 780 2.393 27716 4.310 2,832 1,236 
ClHS 1662 0.151 7268 1.037 16328 2 396 29284 4481 1,948 1,164 

23079 3 3 0 4  

three words t [ O I ,  tlll ,  and t[21 in a single hardware accu- 
mulator, and can add product a[jlb[z -11 in the FIPSjloop 
directly to the accumulator. This makes the] loop very fast. 

DEDICATED HARDWARE DESIGNS will have additional 
trade-offs based on the extent to which they can parallelize 
these methods We do not make any recommendations here, 
but refer the reader to Even’s descnption of a systolic array 
as one example of such a design 

On a general-purpose processor, the CIOS algorithm is 
probably best, as it is the simplest of all five methods and 
requires fewer additions and fewer assignments than the 
other four methods CIOS requires only s + 3 words of tem- 
porary space, which is just slightly more than half the space 
required by the SOS algorithm 

Fbgorous study of modular muhplication algorithms in terms 
of thelr timng and space requlrenients is necessary for fast and 
efficient implementations of public-key cryptographic algo- 
rithms, especially those requiring modular exponenbation In 
this article, we concentrated on Montgomery multiplication 
Further study of related topics-for example, asymptotically 
faster multiplication algorithms and approaches based on 
lookup table techniques-will no doubt expand our knowl- 
edge and help us obtain those fast mplementahons 
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