
Computers and Mathematics with Applications, 30(10):17-24, 1995.

Analysis of Sliding Window Techniques for Exponentiation�

C�etin Kaya Ko�c

Department of Electrical & Computer Engineering

Oregon State University

Corvallis, Oregon 97331

Abstract

The m-ary method for computing xE partitions the bits of the integer E into words of constant
length, and then performs as many multiplications as there are nonzero words. Variable length
partitioning strategies have been suggested to reduce the number of nonzero words, and thus, the
total number of multiplications. Algorithms for exponentiation using such partitioning strategies are
termed sliding window techniques. In this paper, we give algorithmic descriptions of two recently
proposed sliding window techniques, and calculate the average number of multiplications by modeling
the partitioning process as a Markov chain. We tabulate the optimal values of the partitioning
parameters, and show that the sliding window algorithms require up to 8 % fewer multiplications
than the m-ary method.

Key Words: Analysis of algorithms, exponentiation, binary method, m-ary method, Markov chain.

CR Categories: E.3, F.2.1, G.1.0.

1 Introduction

The computation of xE for a positive integer E is required in many important applications in computer
science and engineering. The well-known binary method computes xE using at most 2(n� 1) multipli-
cations, where n is the number of bits in the binary expansion of E. A summary of the algorithms for
computing xE can be be found in [1]. Some of these algorithms, e.g., the power tree and the factor meth-
ods, are applicable only when the exponent is small. Recent applications in cryptography, for example,
the RSA algorithm [2], the ElGamal signature scheme [3], and the digital signature standard (DSS)
of the National Institute for Standards and Technology [4], require the computation of xE (mod M)
for a very large value of E, (usually n = log2E � 512). The binary method is very suitable for these
applications, requiring 1:5(n�1) multiplications on the average. A generalization of the binary method,
the m-ary method, is given by Knuth [1]. When m is a power of 2, the implementation of the m-ary
method is rather simple, since xE can be computed by partitioning the bits of the exponent expressed
in binary. With a proper choice of m = 2d for each n, the m-ary method requires fewer multiplications
than the binary method [1, 5].

Let E = (En�1En�2 � � �E1E0) be the binary expansion of the exponent. This representation of E
is partitioned into k words of length d, such that kd = n. The exponent is padded with at most d � 1
zeros, if d does not divide n. We de�ne

Fi = (Eid+d�1Eid+d�2 � � �Eid) =
d�1X
j=0

Eid+j2
j

�This research was supported in part by RSA Data Security, Inc., Redwood City, California.

1

Computers and Mathematics with Applications, 30(10):17-24, 1995.

such that 0 � Fi � 2d � 1 and E =
Pk�1

i=0 Fi2
id. The m-ary method �rst computes the values of xw for

w = 2; 3; : : : ; 2d � 1. The exponent E is then scanned d bits at a time from the most signi�cant to the
least signi�cant. At each step the partial result is raised to the 2d power and multiplied with xFi where
Fi is the current nonzero word.

The m-ary Method

Input: x;E.
Output: y = xE.
1. Compute and store xw for all w = 2; 3; 4; : : : ; 2d � 1.
2. Decompose E into d-bit words Fi for i = 0; 1; 2; : : : ; k � 1.
3. y := xFk�1

4. for i = k � 2 downto 0

4a. y := y2
d

4b. if Fi 6= 0 then y := y � xFi

5. return y

Step 1 of the m-ary method requires 2d � 2 preprocessing multiplications. The number of multipli-
cation operations in Step 4a is equal to (k � 1)d = n � d. We perform a multiplication in Step 4b if
Fi 6= 0. Since 2d � 1 out of 2d values of Fi are nonzero, the average number of multiplications required
in Step 4b is (k � 1)(1 � 2�d). Thus, we �nd the average number of multiplications as

T (n; d) = 2d � 2 + n� d+

�
n

d
� 1

�
(1� 2�d) . (1)

The average number of multiplications for the binary method can be found simply by substituting d = 1
in (1), which gives T = 1:5(n � 1). Also note that there exists an optimal d = d� for each n such that
T (n; d) is minimized. The optimal values of d can be found by enumeration [1, 5].

2 Sliding Window Techniques

The m-ary method decomposes the bits of the exponent into d-bit words. The probability of a word of
length d being zero is 2�d, assuming that the zero and one bits are produced with equal probability. In
Step 4b of the m-ary method, we skip a multiplication whenever the current word is equal to zero. Thus,
as d grows larger, the probability that we have to perform a multiplication operation in Step 4a becomes
larger. However, the total number of multiplications as given by (1) increases as d decreases. The sliding
window algorithms provide a compromise by allowing zero and nonzero words of variable-length; this
strategy aims to increase the average number of zero words, while using relatively large values of d.

A sliding window exponentiation algorithm �rst decomposes E into zero and nonzero words (win-
dows) Fi of length L(Fi). The number of windows k may not be equal to n=d. In general, it is also not
required that the length of the windows be equal. We take d to be the length of the longest window, i.e.,
d = max(L(Fi)) for i = 0; 1; : : : ; k � 1. Furthermore, if Fi is nonzero window, then the least signi�cant
bit of Fi must be equal to 1. This is because we partition the exponent starting from the least signi�cant
bit, and there is no point in starting a nonzero window with a zero bit. Consequently, the number of
preprocessing multiplications (Step 1) are halved, since xw are computed for odd w only.

The Sliding Window Method

Input: x;E.

2

Computers and Mathematics with Applications, 30(10):17-24, 1995.

Output: y = xE.
1. Compute and store xw for all w = 3; 5; 7; : : : ; 2d � 1.
2. Decompose E into zero and nonzero windows Fi of length L(Fi)

for i = 0; 1; 2; : : : ; k � 1.
3. y := xFk�1

4. for i = k � 2 downto 0

4a. y := y2
L(Fi)

4b. if Fi 6= 0 then y := y � xFi

5. return y

We will analyze two sliding window partitioning strategies which have been proposed in [1] and
[6]. These methods di�er in that the length of a nonzero window can be either constant (= d), or it
can variable (however, � d). In the following sections, we give algorithmic descriptions of these two
partitioning strategies, and calculate the average number of multiplications by modeling the partitioning
process as a Markov chain.

3 Constant Length Nonzero Windows

The constant length nonzero window (CLNW) partitioning algorithm scans the bits of the exponent
from the least signi�cant to the most signi�cant. At any step, the algorithm is either forming a zero
window (ZW) or a nonzero window (NW). The algorithm is described below:

ZW: Check the incoming single bit: if it is a 0 then stay in ZW; else go to NW.

NW: Stay in NW until all d bits are collected. Then check the incoming single bit: if it is a 0 then go
to ZW; else go to NW.

Notice that while in NW, we distinguish between staying in NW and going to NW. The former means
that we continue to form the same nonzero window, while the latter implies the beginning of a new
nonzero window. The CLNW partitioning strategy produces zero windows of arbitrary length, and
nonzero windows of length d. Two adjacent zero windows are necessarily concatenated, while two
nonzero windows may be adjacent. For example, for d = 3, we partition E = 3665 = (111001010001) as

E = 111 00 101 0 001 .

The CLNW sliding window algorithm �rst performs the preprocessing multiplications and obtains xw

for w = 3; 5; 7. Starting with y = xF4 = x7, it proceeds to compute x3665 as follows:

i Fi L(Fi) Step 4a Step 4b

3 00 2 (x7)4 = x28 x28

2 101 3 (x28)8 = x224 x224 � x5 = x229

1 0 1 (x229)2 = x458 x458

0 001 3 (x458)8 = x3664 x3664 � x1 = x3665

In order to compute the average number of nonzero windows, which represents the number of mul-
tiplications required in Step 4b, we model the partitioning process using a Markov chain. An n-bit
binary number E uniformly distributed in the range [0; 2n � 1] can be viewed as a random process that

3

Computers and Mathematics with Applications, 30(10):17-24, 1995.

generates one bit at a time. Each bit assumes a value of zero or one with equal probability and there is
no dependency between any two bits, i.e., P(Ei = 0) = P(Ei = 1) = 1

2 for 0 � i � n� 1. State variable
S of the Markov chain is equal to 0 when zero windows are being formed (ZW), and S is equal to the
length of the current nonzero window when nonzero windows are being formed (NW). Thus, we have
S = 0; 1; 2; 3; : : : ; d. The probability that state S = j succeeds state S = i is denoted by Pij . Since
P(Ei = 0) = P(Ei = 1) = 1

2 , we have

P00 = P01 =
1

2
.

Furthermore, once the �rst bit is equal to 1, we collect d � 1 more bits to obtain a nonzero window of
length d, which implies

Pi;i+1 = 1 for 1 � i � d� 1 .

After all d-bits are collected, depending on the value of Ei, the next state is either S = 0 (when Ei = 0)
or S = 1 (when Ei = 1), i.e.,

Pd0 = Pd1 =
1

2
.

All the other Pijs are zero. The state table of the Markov chain is given in Table 1.

Table 1: The CLNW state table.

S S+ P S+ P

0 0 1=2 1 1=2
1 2 1
2 3 1
3 4 1
...

...
...

d� 1 d 1
d 0 1=2 1 1=2

The one-step transition probability matrix for d = 5 is given as

P =

2
66666664

1=2 1=2 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1=2 1=2 0 0 0 0

3
77777775

.

Let C1 be the average number of nonzero windows after all n bits have been received. This can be found
by counting the number of transitions from state 0 to state 1. Let P(n) denote the n-step transition
probability matrix, which is simply the nth power of the matrix P. We de�ne the matrix Q(n) as the
sum

Q(n) =
nX
i=1

P (i) =
nX
i=1

P i .

4

Computers and Mathematics with Applications, 30(10):17-24, 1995.

Thus, after n iterations, the average number of transitions from state 0 to state 1 is found as

C1 = Q
(n)
01 . (2)

Note that the number of preprocessing multiplications is given by (2d�2)=2 = 2d�1�1, and the number
of squaring operations is equal to n� d. Thus, the average number of multiplications required by this
sliding window technique is found as

T1(n; d) = 2d�1 � 1 + n� d+ C1 � 1 . (3)

Given the integers n and d, we can easily compute T1 by �rst forming the (d + 1) � (d + 1) matrix P,
and then computing C1 using (2). In Table 2, we tabulate the average number of multiplications for
the m-ary and the CLNW sliding window methods. The column for the m-ary method contains the
optimal values d� for each n. As expected, there exists an optimal value of d for each n for the CLNW
sliding window algorithm as well. These optimal values are also included in the table. The last column
of the table contains the percentage di�erence in the average number of multiplications. The CLNW
partitioning strategy reduces the average number of multiplications by 3{7 % for 128 � n � 2048. The
overhead of the partitioning is negligible; the number of bit operations required to obtain the partitioning
is O(n).

Table 2: The m-ary versus the CLNW methods.

m-ary CLNW (T�T1)=T

n d� T d� T1 %

128 4 168 4 156 7.14
256 4 326 5 308 5.52
384 5 483 5 458 5.18
512 5 636 5 607 4.56
640 5 789 6 756 4.18
768 5 941 6 903 4.04
896 5 1094 6 1049 4.11
1024 5 1247 6 1195 4.17
1152 6 1397 6 1341 4.01
1280 6 1546 6 1488 3.75
1408 6 1695 6 1634 3.60
1536 6 1844 6 1780 3.47
1664 6 1993 6 1927 3.31
1792 6 2142 7 2072 3.27
1920 6 2291 7 2216 3.27
2048 6 2440 7 2360 3.28

4 Variable Length Nonzero Windows

The CLNW partitioning strategy starts a nonzero window when a 1 is encountered. Although the
incoming d � 1 bits may all be zero, the algorithm continues to append them to the current nonzero
window. For example, for d = 3, the exponent E = (111001010001) was partitioned as

E = 111 00 101 0 001 .

5

Computers and Mathematics with Applications, 30(10):17-24, 1995.

However, if we allow variable length nonzero windows, we can partition this number as

E = 111 00 101 000 1 .

We will show that this strategy further decreases the average number of nonzero windows. The variable
length nonzero window (VLNW) partitioning strategy requires that during the formation of a nonzero
window (NW), we switch to ZW when the remaining bits are all zero. The VLNW partitioning strategy
has two integer parameters:

� d : maximum nonzero window length,

� q : minimum number of zeros required to switch to ZW.

The algorithm proceeds as follows:

ZW: Check the incoming single bit: if it is zero then stay in ZW; else go to NW.

NW: Check the incoming q bits: if they are all zero then go to ZW; else stay in NW. Let d = 1+kq+r
where 1 < r � q. Stay in NW until 1 + kq bits are received. At the last step, the number of
incoming bits will be equal to r. If these r bits are all zero then go to ZW; else stay in NW. After
all d bits are collected, check the incoming single bit: if it is zero then go to ZW; else go to NW.

The VLNW partitioning produces nonzero windows which start with a 1 and end with a 1. Two nonzero
windows may be adjacent; however, the one in the least signi�cant position will necessarily have d bits.
Two zero windows will not be adjacent since they will concatenated. For example, let d = 5 and q = 2,
then 5 = 1+1 �2+2, thus k = 1 and r = 2. The following illustrates the partitioning of a long exponent
according to these parameters:

101 0 11101 00 101 10111 000000 1 00 111 000 1011 .

Also, let d = 10 and q = 4, which implies k = 2 and r = 1. A partitioning example is illustrated below:

1011011 0000 11 0000 1111110101 00 11110111 0000 11011 .

In order to compute the average number of multiplications, we model the partitioning process as a
Markov chain. The state variable S takes the values 0; 1; 2; : : : ; k; k + 1; k + 2. When S = 0, we are
forming a zero window. The formation of a nonzero window starts with S = 1. Assuming the exponent
bits are produced with equal probability, we conclude that

P00 = P01 =
1

2
.

In state 1, we check the incoming q bits: if they are all zero (with probability 2�q) then the next state
is 0; otherwise (with probability 1� 2�q), the next state is 2. We proceed in this fashion until we reach
state k + 1. Thus,

Pi;0 = 2�q

Pi;i+1 = 1� 2�q

)
for i = 1; 2; : : : ; k .

In step k + 1, we check the remaining r bits: if they are all zero (with probability 2�r), the next state
is 0; otherwise (with probability 1� 2�r), the next state is k + 2. This implies

Pk+1;0 = 2�r ,

Pk+1;k+2 = 1� 2�r .

6

Computers and Mathematics with Applications, 30(10):17-24, 1995.

Finally, after all d bits are collected, we check the incoming single bit: if it is zero, the next state is 0;
otherwise the next state is 1. Thus we have

Pk+2;0 = Pk+1;1 =
1

2
.

The state table of the Markov chain is given in Table 3.

Table 3: The VLNW state table.

S S+ P S+ P

0 0 1=2 1 1=2
1 0 2�q 2 1� 2�q

2 0 2�q 3 1� 2�q

3 0 2�q 4 1� 2�q

...
...

...
...

...
k 0 2�q k + 1 1� 2�q

k + 1 0 2�r k + 2 1� 2�r

k + 2 0 1=2 1 1=2

For example, the transition probability matrix for d = 12 and q = 3 (thus, k = 3 and r = 2) is given as

P =

2
66666664

1=2 1=2 0 0 0 0
1=8 0 7=8 0 0 0
1=8 0 0 7=8 0 0
1=8 0 0 0 7=8 0
1=4 0 0 0 0 3=4
1=2 1=2 0 0 0 0

3
77777775

.

The Markov chain for the VLNW partitioning is slightly di�erent from that of the CLNW partitioning
in the sense that after a single iteration of the chain we may receive 1, q, or r bits. Thus, if we allow
the chain to iterate n times, then we may collect more than n bits. The number of bits collected is
determined by the average behavior of the Markov chain. Let P(s) be the s-step transition probability
matrix, and Q(s) be the sum of the i-step transition probability matrices for i = 1; 2; : : : ; s. After s
iterations, the number of bits collected is equal to

n0 = Q
(s)
00 +Q

(s)
01 +Q

(s)
k+2;0 +Q

(s)
k+2;1 + q

"
kX

i=1

Q
(s)
i;i+1 +Q

(s)
i;0

#
+ r

h
Q

(s)
k+1;k+2 +Q

(s)
k+1;0

i
. (4)

The average number of nonzero windows is given by

C2 = Q
(s)
01 +Q

(s)
k+2;1 , (5)

and the average number of bits (zero or one) within the nonzero windows is found as

C3 = Q
(s)
01 +Q

(s)
k+2;1 + q

"
kX

i=1

Q
(s)
i;i+1

#
+ rQ

(s)
k+1;k+2 , (6)

which gives the average nonzero window length as C3=C2. Thus, we �nd the average number of multi-
plications as

T2(n
0; d; q) = 2d�1 � 1 + n0 �

C3

C2
+ C2 � 1 . (7)

7

Computers and Mathematics with Applications, 30(10):17-24, 1995.

In order to compute the average values of T2, we �rst pick the parameters d and q. Then, using the
expression (4), we �nd the smallest s such that n0 � n. This value of s is used in expressions (5) and
(6) to obtain an average value for T2. Our experiments have indicated that the best values of q are
between 1 and 3 for 128 � n0 � 2048 and 4 � d � 8. In Table 4, we tabulate the minimal values of
T=n (the m-ary), and T2=n

0 (VLNW) together with the optimal values of d for n = 128; 256; : : : ; 2048
and q = 1; 2; 3. The VLNW algorithm requires 5{8 % fewer multiplications than the m-ary method. In
Figure 1, we plot the average number of multiplications for the m-ary and the sliding window algorithms
as a function of n = 128; 256; : : : ; 2048.

Table 4: The m-ary versus the VLNW methods.

m-ary VLNW (T2�T)=T2

T2=n
0 for q�

n d� T=n d� q = 1 q = 2 q = 3 %

128 4 1.305 4 1.204 1.203 1.228 7.82
256 4 1.270 4 1.184 1.185 1.212 6.77
384 5 1.256 5 1.172 1.183 1.170 6.85
512 5 1.241 5 1.163 1.175 1.162 6.37
640 5 1.231 5 1.158 1.170 1.157 6.01
768 5 1.225 5 1.155 1.167 1.154 5.80
896 5 1.221 6 1.152 1.150 1.161 5.81
1024 5 1.217 6 1.148 1.146 1.157 5.83
1152 6 1.212 6 1.145 1.143 1.154 5.69
1280 6 1.207 6 1.142 1.140 1.152 5.55
1408 6 1.203 6 1.140 1.138 1.150 5.40
1536 6 1.200 6 1.138 1.136 1.148 5.33
1664 6 1.197 6 1.137 1.135 1.147 5.18
1792 6 1.195 6 1.136 1.134 1.146 5.10
1920 6 1.193 6 1.135 1.133 1.145 5.03
2048 6 1.191 6 1.134 1.132 1.144 4.95

5 Conclusions

The sliding window algorithms are easy to program, introducing negligible overhead. The reduction in
terms of the number of multiplications is notable, for example, for n = 512, the m-ary method requires
636 multiplications whereas the CLNW and VLNW sliding window algorithms require 607 and 595
multiplications, respectively. The reduction in total time can be signi�cant when the multiplication
operation requires a considerable amount of time. Such applications are found in cryptography where
one needs to compute xE (mod M) for very large values of E and M . The sliding window algorithms
have been proposed in this context, especially for speeding up the RSA encryption and decryption
operations. Other related exponentiation heuristics can be found in [7, 8, 9].

References

[1] D. E. Knuth. The Art of Computer Programming: Seminumerical Algorithms, volume 2. Reading,
MA: Addison-Wesley, Second edition, 1981.

8

Computers and Mathematics with Applications, 30(10):17-24, 1995.

[2] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM, 21(2):120{126, February 1978.

[3] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory, 31(4):469{472, July 1985.

[4] National Institute for Standards and Technology. Digital signature standard (DSS). Federal Register,
56:169, August 1991.

[5] C� . K. Ko�c. High-radix and bit recoding techniques for modular exponentiation. International Journal
of Computer Mathematics, 40(3+4):139{156, 1991.

[6] J. Bos and M. Coster. Addition chain heuristics. In G. Brassard, editor, Advances in Cryptology |

CRYPTO 89, Proceedings, Lecture Notes in Computer Science, No. 435, pages 400{407. New York,
NY: Springer-Verlag, 1989.

[7] Y. Yacobi. Exponentiating faster with addition chains. In I. B. Damg_ard, editor, Advances in

Cryptology | EUROCRYPT 90, Lecture Notes in Computer Science, No. 473, pages 222{229. New
York, NY: Springer-Verlag, 1990.

[8] E. F. Brickell, D. M. Gordon, K. S. McCurley, and D. B. Wilson. Fast exponentiation with precom-
putation. In R. A. Rueppel, editor, Advances in Cryptology | EUROCRYPT 92, Lecture Notes in
Computer Science, No. 658, pages 200{207. New York, NY: Springer-Verlag, 1992.

[9] �O. E�gecio�glu and C� . K. Ko�c. Exponentiation using canonical recoding. Theoretical Computer Science,
129(2):407{417, 1994.

Figure 1: The m-ary versus the sliding window algorithms.

m-ary

CLNW

VLNW

256 512 768 1024 1280 1536 1792 2048

n

1.1

1.15

1.2

1.25

1.3

T
/n

9

