Theoretical Computer Science 129 (1994) 407-417 407
Elsevier

Note

Exponentiation using canonical
recoding

Omer Egecioglu
Department of Computer Science, University of California, Santa Barbara, CA4 93106, USA

Cetin Kaya Kog*

Department of Electrical and Computer Engineering, Oregon State University, Corvallis, OR 97331,
US4

Communicated by O.H. Ibarra
Received April 1993
Revised August 1993

Abstract

Egecioglu, O. and QK. Kog, Exponentiation using canonical recoding, Theoretical Computer
Science 129 (1994) 407-417.

The canonical bit recoding technique can be used to reduce the average number of multiplications
required to compute X ¥ provided that X ™! is supplied along with X. We model the generation of the
digits of the canonical recoding D of an n-bit long exponent E as a Markov chain, and show that
binary, qualernary, and octal methods applied to D require 4n, §n,and $ » multiplications, compared
to 4 n, 11 n, and 3% 1 required by these methods applied to E. We show that, in general, the canonically
recoded m-ary method for constant m requires fewer multiplications than the standard m-ary method.
However, when m is picked optimally for each method for a given n, then the average number of
multiplications required by the standard method is fewer than those required by the recoded version.

1. Introduction

The binary method [5] computes Y=XF using n—1 squarings and as many
multiplications as one less than the number of nonzero bits in the binary expansion of

Correspondence to: O. Egeciogly, Department of Computer Science, University of California, Santa
Barbara, CA 93106, USA. E-mail: omer@ecs.ucsb.edu.
*Supported in part by RSA Data Security Inc., Redwood City, CA, USA.

0304-3975/94/807.00 © 1994—Elsevier Science B.V. All rights reserved
SSD1 0304-3975(93)E0200-N

408 0. Egecioglu, C.K. Kog

the exponent, where n=1+| log, E |. It is well known that n—1 is a lower bound for
the number of squaring opcrations required. However, it is possible to reduce the
number of subsequent multiplications using a recoding of the exponent [4, 6,7, 10, 16].
Recoding techniques (Booth recoding, bit-pair recoding, etc.) for sparse representa-
tions of binary numbers have been effectively used in multiplication algorithms
[3,17]. For example, the original Booth recoding technique [1] scans the bits of the
multiplier one bit at a time, and adds or subtracts the multiplicand to or from the
partial product, depending on the value of the current bit and the previous bit. The
modified versions of the Booth algorithm scan the bits of the multiplier two bits at
a time [9] or three bits at a time [17]. These techniques are equivalent in the sense that
a signed-digit representation which is based on the identity 21*/—2/=2""/""4
20Fi=24 ... 4 21* 14 2% §s used to collapse blocks of 1's appearing in a binary repres-
entation. In a signed-digit number with radix 2, three symbols {1,0, 1} are allowed for
the digit set, in which 1 and T in bit position i represent +2' and —2', respectively.

Bit recoding techniques applied to E can be used for the exponentiation problem
provided that X ~' is supplied along with X. Throughout this paper, we will ignore
the preprocessing time required for the computation of X ~! and treat it as part of the
input.

2. Canonical recoding

A signed-digit vector D of E is a sparse recoding of E using digits from the set
{1,0,1}. The recoding is canonical if D contains no adjacent nonzero digits 3,8, 13].
Thus, a canonical signed-digit vector of E is of the form D=(D, 1D, ;- D) with
D;e{1,0,1} and

Df‘DI_|=0 forlé:'én—l‘

It can be shown that the canonical signed-digit vector for E is unique if the binary
expansion of E is viewed as padded with an initial zero. This canonical signed-digit
vector can be constructed by the canonical recoding algorithm of Reitwiesner [13].
Reitwiesner’s algorithm computes D starting from the least significant digit and
proceeding to the left. First the auxiliary carry variable Cy is set to 0 and subsequently
the binary expansion of E is scanned two bits at a time. The canonically recoded digit
D, and the next value of the auxiliary binary variable C;., for i=0,1,2,...,n are
generated using Table 1. As an example, when E=3038, we compute the canonical
signed-digit vector D as

E=(0101111011110)=2"1+2° 428427426 424423422421,
D=(1010000100010)=212—-2'0—2%_2"

Note that in this example the exponent E contains nine nonzero bits while its
canonically recoded version contains only four nonzero digits. Consequently, the

Exponentiation using canonical recoding 409

Table 1
Canonical recoding

Eisy E; C. D; Cis
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 I 0 1
1 0 0 0 0
1 0 1 1 I
1 1 0 1 1
1 | 1 0 1

binary method requires 1148 =19 multiplications to compute X *** when applied to
the binary expansion of E, but only 12+ 3= 15 multiplications when applied to the
canonical signed-digit vector D. The canonical signed-digit vector D is optimal in the
sense that it has the minimum number of nonzero digits among all signed-digit vectors
representing the same number.

3. The standard m-ary method

The binary method can be generalized to the (standard) m-ary method [5,12, 16]
which scans the digits of E expressed in radix m. We restrict our attention to the case
when m=2¢ for some d. Let E=(E,_,E,_»---E, E,) be the binary cxpansion of the
exponent. We will assume that the most significant bit is ¢qual to zero, ie, E, - =0.
This representation of E is partitioned into k blocks of length d each, for kd=n (if
d does not divide n, the exponent is padded with at most d—1 zeros). Define

d—1
Fi=[Eid+d—1Ei¢I+d—.‘!"'Eid): Z Emwzr- (1]
r=0

Note that 0< F;<2¢—1 and E=Y*_} F;2" In the preprocessing phase of the m-ary
method, the values of X ¥ for F=2,3,...,2— | corresponding to all possible values of
the length-d bit-sections are computed. Next, the bits of E are scanned d bits at a time
from the most significant to the least significant. At each step the partial result is
raised to the 2¢ power and multiplied with X F where F; is the (nonzero) value of the
current bit section.

Standard m-ary method
Input: X,E,n,d where n=1+|log, E | and n=kd for k=1.
Output: Y=XF,
1. Decompose E into d-bit words F; for i=0,1,2,....k—1.
2. Compute and store X ¥ for all F=2,3,4,...,2¢—1.

410 0. Ejecioglu, C.K. Kog

3. Fi=Xh-
4. for i=k—2 downto 0

4a. Yi=Y¥

4b. if F;#0 then Y:=Y-XF
5. return Y

The preprocessing part in Step 2 of the m-ary method requires 2¢—2 multiplica-
tions. The number of squaring operations in Step 4a is equal to (k— 1)d. Multiplica-
tions in Step 4b are performed for nonzero values of F;. Since m— 1 out of m possible
values of F; are nonzero, the average number of subsequent multiplications required is

(k—1)((m—1)/m). Thus, we find that, on the average, the m-ary method requires
a total of

Ts{n,d}=n-—d+(§—1)(1—%)+2”—2)

multiplications. The average number of squarings plus multiplications for the binary
(d=1), the quaternary (d=2), and the octal (d =3) methods are found from (2) as

TinD)=3n—3, T(m2=%n-3, Tn3)=%n-}, (3)

respectively.

4. The recoded m-ary method

In the recoded m-ary method, we partition the canonical signed-digit vector
D produced by Reitwiesner’s algorithm instead of the exponent E itself. In other
words, in the recoded m-ary method the d-bit-at-a-time partitioning that determines
the bit sections F; in (1) is applied to the canonical signed-digit vector D.

Recoded m-ary method
Input: X,X ' E,n,d where n=1+| log, E | and n=kd for k= 1.
Output: Y=XFE
1. Compute the canonical signed-digit recoding D of E using Reitwiesner’s algo-
rithm.

2. Decompose D into d-bit words F; for i=0,1,2,...,k— 1.
3. Compute and store X ¥ for all possible length-d bit-sections that can appear in D.
4. Yi=XNo
5. for i=k—2 downto O
Sa. Y=YY

5b. if F;#0 then Y=Y - XF
6. return ¥

Exponentiation using canonical recoding 411

5. Analysis of the recoded m-ary method

In the analysis of the recoded m-ary method we need the number of all possible
length-d sections F of a canonical signed-digit vector to estimate the work involved in
Step 3 of the recoded m-ary method. To compute this, denote by % the formal
language of all words w over the alphabet {1,0,1} in which none of the patterns

1, 1, 1, 11
appears. Thus, the words w of length d in & correspond to possible length-d sections

F; of a canonical signed-digit vector. For d =0, let 7, denote the total number of words
of length d in .¥. We have the following result.

Lemma 5.1.

=5[22 +(=1)""].)

Proof. By considering the words in .¢ according to their first letier, we see
P=r+1+1+102+10L +02, (5)

where % denotes the empty word and 4 denotes disjoint union. Consider the
generating function

fel)= 3, M= ztf.

weZ d=0

It follows from (5) that f satisfics
Jo()=142t+2t2f(6) + [(1),

and therefore

142 41 11
T1—t—=2t% 31—-2t 31+t

fe(t) (6)

Now (4) follows by equating the coefficient of 1 on both sides of (6). [l

Since we are interested in the cost of multiplications required in exponentiation, we
do not concern ourselves with the bit level preprocessing required for the computation
of the canonical recoding D in Step 1 of the algorithm. The number of multiplications
necessary in the preprocessing stage Step 3 of the recoded m-ary method is given by
the following lemma.

Lemma 5.2. The number of multiplications required in the preprocessing phase (Step 3)
of the recoded m-ary method is

1—3=4 242+ (= 1)1+ 1]-3,

412 . Egeciogin, C.K. Kog

Proof. We need to compute the number of multiplications required to compute
X for all length-d canonical signed-digit vectors F. First we compute all quantities
X" where F contains only one nonzero letter. Since 1, X, and X ~! are already avail-
able, this step requires 2(d— 1) multiplications. After this, each value XF, where
F contains k> 1 nonzero digits, can be computed recursively from the already com-
puted values of X where F contains fewer than k nonzero digits by a single multi-
plication. For k=0, let ¢, denote the number of words of length d in . with exactly
k nonzero letters. Then the total number of multiplications required for the prepro-
cessing step is

2d—D+catcs+ -

Since co=1, ¢, =2d and

Tg=Cop+Cy+Cat e,

it follows that the total number of multiplications required is 7,— (1 +2d)+ 2(d — 1)=
T 3. 0O

Now we turn to the computation of the probability that a length-d canonically
recoded bil-section F consists of d zeros, since the multiplication in Step 5b of the
recoded m-ary method is carried out only for nonzero F. An n-bit binary number
E uniformly distributed in the range [0,2"—1] can be viewed as the output of
a random process that generates one bit at a time. Each bit assumes a value of zero or
one with equal probability and there is no dependency between any two bits gener-
ated. Thus, 2(E;=0)=2(E;= l)=1 for 0<i<n— 1. The signed-digit numbers produ-
ced by the canonical recoding algorithm can be modeled using a finite Markov chain.
The state variables are taken to be the triplets (E; . {, E;, C;). There are eight states for
the eight possible combinations of input as given in Table 1. The state transitions
given in Table 2 are produced by considering all eight states labeled s, to s; and their
successors from Table 1. As an example, consider state s, which represents
(Eiyy1, E;, C)=(0,0,0). We compute the output (D;, Ci1) as (0,0) from Table 1. Thus,
the next state is (Ej12, Eiv1,Civ1)=(E;+2,0,0). Since Z(E;,,=0)=2(E;1.=1)=14,
there are transitions from state s, to the states s, =(0,0,0) and 5, =(1,0,0), with equal
probability.

Let #; denote the probability that the successor state of s; is 5;. From the above
analysis %o =%y =13 and %,;=01for j=1,2,3,5,6,7. After computing the probabilit-
ies Z; for all i and j from Table 2, we find that the one-step transition probability

Exponentiation using canonical recoding 413

Table 2
State transition table for the canonical recoding algorithm

MNext state

State Output

5 (Eiv1.E0 G)) (Di.Ciy1) Ej1,=0 Eiy2=1
S0 (0,0,0) (0,0} S Sy

5y (0,0, 1) (1,0) S0 5y

83 (0,1,0) (1,0 So Sa

83 0,10 (0,1} 5 s

54 {1,0,0) 0,0 82 S6

$5 (1,0, 1) (Ln 53 Sq

Sq (1,1,0) (L1 53 59

§7 (1,1,1) {0,1) 83 S

matrix of the chain is

1 0o 0 12 0 0 0
2 0 0 0 12 0 0
12 0 0 12 0 0 0
0 12 0 0 0 12 0 0

= (M)

0 0 12 0 0 0 12 0
0 0 0 12 0 0 1/2
6o 0 0 12 0 0 12

Lo o 0 12 0 0 0 1/2]

The limiting probability =; of state s; can be found by solving the system of linear
equations nP=n with mg+m; +--+my=1. This gives

n':[%;:! llisﬁ7_i;1 [l;ell_Z'sl_lZ&_(l;] (8}

Having computed n; and #; for all 0<i, j<7, we can easily prove several properties of
the canonical recoding algorithm. For example, the probability that a digit in
a canonical signed-digit number D is equal to zero is found by summing the limiting
probabilities of the states for which output D;=0. From Table 2 and (8) we get

t/’;"(Di=0']=1'E.;.—|—i‘I3+;-‘:4-}-;n;.,=§_

In particular, the average number of nonzero digits in the canonically recoded binary
number D is equal to 4 n. Therefore, the average number of squarings plus multiplica-
tions required by the recoded binary method for large n is $n+O(1), which is better
than T.(n, 1)=2n+O(1) required by the standard binary method.

414 0. Egeciojlu, C.K. Kog

Theorem 5.3. The probability that a length-d bit-section F in a canonically recoded
signed-digit vector has all bits equal to zero is

-ty 1
5] sw=

Proof. We have alrecady seen that 2(D;=0)=3. The probability that D;,, =0 when
D;=0 is found as

2D, =0 DEZG):ZJZU,S,‘L? ﬂui);ao;'+?T3-“3‘°3j+?f49_94j+ﬂ7£5’1j=1_
Mo+ T3+ Ty + 75 2

It follows that for d <1

. 112
.’J}ra(D;+d_]:0|Dj+d—3=0., Df'i'if—'ﬂ:{)‘"'lDi=0):(;) ‘:‘3‘ l:l
Combining Theorem 5.3 and the preprocessing cost for the recoded m-ary method

given in Lemma 5.2, we find that, on the average, the recoded m-ary method with
m=2" requires a total of

7}{11,{2‘)::1—(:’—#(1—3—_:)%)(5— l)+%[2‘”3+(— 1y4*1]1-3 9)
squarings and multiplications. Figure | compares the average number of multiplica-
tions required by the standard and the recoded m-ary methods, respectively, as
a function of n=27,28, ...,2% and d=1,2, ..., 15.

The average number of squarings plus multiplications for the recoded binary (d= 1),
the recoded quaternary (d=2), and the recoded octal (d =3) methods are found from
(9) as

T)=%n—%, T(m2=%n-3% T3)=1n+H, (10)

respectively.

6. Comparison of standard and recoded m-ary methods

For large n and fixed d, the behavior of 7,(n,d) given in (9) and T.(n,d) of the
standard m-ary method given in (2) is governed by the coefficient of n. In Table 3 we
compare the values T;(n,d)/n and Ti(n,d)/n for large n.

We can compute directly from the expressions in (2) and (9) that for constant d

» T,{n,d_)_ (d+1)2¢
w=w To(md) (d+1)2¢

|‘|
— | sl
M
3

(11)

Exponentiation using canonical recoding 415

1.8 . 28 29 210 o114,
— standard y 212 213 514 515 36
—— recoded /
758 [59 /510
1.6 F 2T 2727 27" {11512 213514 215 516
=
~
)
E 1.4 F
E..|
"R
1.2 [=
_‘.\-—‘
1 ! L I ! ' |] ! ! | L
3 10 15
d

Fig. 1. The standard versus recoded m-ary methods.

Table 3
The average number of multiplications for the recoded and standard m-ary methods

d=logam 1 pi 3 4 5 6 7 8

T.in,d)/n L5 1.375 1.29167 1.23437 1.19375 1.16406 1.14174 1.12451
T(nd)/n 1.33333 133333 1.27778 1.22917 1.19167 1.16319 1.14137 112435

It is interesting to note that if we consider the optimal values d, and d, of d (which
depend on n) which minimize the average number of multiplications required by the
standard and the recoded m-ary methods, respectively, then

T;(n! "‘Ir)

At 2
T.(n,d,) (12)

for large n. To prove (12), we consider the behavior of T.(n,d) and T,(n,d) for large
n and ignore the lower-order terms involving d in (2) and (9). By differentiation, the
optimal values d=d, and d=d, of the lengths of the bit-sections in the standard and

416 0. Egeciogi, C.K. Kog
the recoded m-ary methods that minimize the number of multiplications are found
to be

d*2%og2—d?*log?2 - 4d*2%* log2—4d*log2
=M =Hh,
2 _dlog2—1 329 _4dlog2—4 "

respectively. Since d increases without bound in each of these equations as n gets large,
d, and d, satisfy

d?2%log2xn and d22%log2=in. (13)
The function d22¢ is an increasing function of d and therefore d, <d,. Now [rom the
expressions in (2) and (9) we get

T(n,d,) 1+ 1/d,

To(n,d)~ 1+1/d,

for large i, which implies (12). Exact values of d. and d, for a given n can be obtained
by enumeration. These optimal values of d, and d, are given in Table 4 together with
the corresponding values of 7, and 7, for cach i I

7. Remarks

Algorithms for computing X E using as few multiplications as possible are crucial in
many important applications in computer science and engineering. Recent applica-
tions in cryptography, for example, the RSA algorithm [14], the EIGamal signature
scheme [2], and the recently proposed digital signature standard (DSS) of National
Institute for Standards and Technology [11], require the computation of XE(mod M)
for large values of E (usually n=log, E=512). The recoded m-ary method can be
useful for these particular applications il X =1 can be supplied without too much extra
cost. Even though the inverse X~ !(mod M) can easily be computed using the

Table 4
Optimal values of d, and d, together with T, and T,

n d, T.(n.d,) d, Tin,d,)

128 4 168 3 168
256 4 326 4 328
512 ; 636 4 643
1024 5 1247 5 1255
2048 6 2440 6 2458
4096 7 4795 7 4836
8192 8 9457 T 9511
16384 8 18 669 8 18751
32768 9 36902 9 37070
65536 10 73095 10 73433

Exponentiation using canonical recoding 417

extended Euclid algorithm, the cost of this computation far exceeds the time gained by
the use of the recoding technique in exponentiation. Thus, at this time the recoding
techniques do not seem to be particularly applicable to these cryptosystems. However,
the recoding techniques may be useful for computations on elliptic curves over finite
fields, since in these cases the inverse is available at no additional cost [6,10]. In this
context, one computes E - X, where E is a large integer and X is a point on the elliptic
curve. The multiplication operator is determined by the group law of the elliptic curve.
An algorithm for computing XF is casily converted to an algorithm for computing
E- X, where we replace multiplication by addition and division (multiplication with
the inverse) by subtraction.

References

[1] A.D. Booth, A signed binary multiplication technique, Quart. J. Mech. Appl. Math. 4 (1951) 236-240
(also reprinted in [15, pp. 100-104]).

[2] T.ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms, [EEE
Trans. Inform. Theory 31 (1985) 469-472.

[3] K. Hwang, Computer Arithmetic, Principles, Architecture, and Design (Wiley, New York, 1979).

[4] J. Jedwab and C.I. Mitchell, Minimum weight modified signed-digit representations and fast ex-
ponentiation, Electron. Lett. 25 (1989) 1711172

(5] D.E. Knuth. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms (Addison-Wesley,
Reading, MA, 2nd ed.. 1981).

[6] N. Koblitz, CM-curves with good cryptographic properties, in: I. Feigenbaum, ed.. Advances in
Cryptology — Proc. CRYPTO 91, Lecture Notes in Computer Science, Vol. 576 (Springer, New York,
1991) 279-287.

[7] G.K.Kog, High-radix and bit recoding techniques for modular exponentiation, fnternat. J. Comput.
Math. 40 (1991) 139-156.

[8] L Koren, Computer Arithmetic Algorithms (Prentice-Hall, Englewood Cliffs, NJ, 1993).

[9] O.L. MacSorley, High-speed arithmetic in binary computers, Proc. IRE 49 (1961) 67-91 (also
reprinted in [15, pp. 14-38]).

[10] F. Morain and J. Olivos, Speeding up the computations on an clliptic curve using addition—subtrac-
tion chains, Rapport de Recherche 983, INRIA, 1989,

[11] National Institute for Standards and Technology, Digital signature standard (DSS), Federal Register
56 (1991) 169.

[12] H. Orup and P. Kornerup, A high-radix hardware algorithm for calculating the exponential M*
modulo N, Proc. 10th Symp. Comput. Arith. (1991) 51-56.

[13] G.W. Reitwiesner, Binary arithmetic, Adv. Comput. 1 (1960) 231-308.

[14] R.L. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public-key
cryptosystems, Commun. ACM 21 (1978) 120-126.

[15] E.E.Swartzlander, ed., Computer Arithmetic, Vol. 1 (IEEE Computer Soc. Press, Los Alamitos, CA,
1990).

[16] N. Takagi, A radix-4 modular multiplication hardware algorithm for modular exponentiation, TEEE
Trans. Comput. 41 (1992) 949-956.

[17] S. Waser and M.J. Flynn, Inroduction to Arithmetic for Digital System Designers (Freeman, New
York, 1982).

