Computers Math. Applic. Vol. 24, No. 3, pp. 3-12, 1992 0097-4943/92 $5.00 + 0.00
Printed in Great Britain. All rights reserved Copyright© 1992 Pergamon Press Ltd

ADAPTIVE m-ARY SEGMENTATION AND CANONICAL
RECODING ALGORITHMS FOR MULTIPLICATION
OF LARGE BINARY NUMBERS

CETIN K. Kog AND CHING-YU HUNG
Department of Electrical Engineering

University of Houston, Houston, TX 77204, U.S.A.

{Received June 1990)

Abstract—We propose a variable-length segmentation strategy which significantly reduces the av-
erage number of additions required by the m-ary segmentation and the canonical recoding algorithms
for multiplication of large binary numbers. This strategy produces two new algerithms: the adaptive
m-ary segmentation algorithm utilizes both the speedup inherent in high-radix multiplication and
the ability to skip zero bits; the adaptive m-ary segmentation canonical recoding algorithm gains
additional benefit from the increased probability of zero after the canonical recoding. The average
number of additions required is computed using Markov chains.

1. INTRODUCTION

The binary add-and-shift algorithm requires at most n additions to compute P = AB, where
multiplicand A and multiplier B are n-bit binary numbers, and an addition operation involves
two (up to) 2n-bit numbers [1,2]. The sequential add-and-shift algorithm computes the product
by scanning the bits of multiplier B one or more than one bits at a time, and adding some multiple
of multiplicand A to the partial product. The computation time of the multiplication operation
is proportional to the total number of additions required. However, the partial products may also
be generated and summed in parallel. The total execution time of the parallel multiplication can
be decreased substantially by using the partial product matrix reduction or column compression
techniques [3,4]. The parallel execution time and the amount of memory space required for partial
product generation are still a function of the total number of partial products.

We are interested in obtaining recoding and segmentation methods to reduce the average
number of partial products. Assuming that the multiplication algorithm computing the final
product is the sequential add-and-shift algorithm, we concentrate on the reduction of the average
number of additions required. There are two well-known methods to reduce the total number of
additions: m-ary segmentation and canonical recoding. This paper contains the following results:

o In Section 2 we count the average number of additions required by the m-ary segmenta-
tion algorithm and show that the total number of additions can be minimized by proper
selection of m.

e In Section 3 we introduce a Markov chain model in order to compute the average number
of additions required by the canonical recoding multiplication algorithm.

e In Section 4 we propose a novel adaptive (data-dependent and variable-length) segmen-
tation strategy to further reduce the average number of additions required by the m-ary
multiplication algorithm.

e In Section 5 we apply the new segmentation strategy to the canonically recoded signed-
digit number, obtaining the adaptive m-ary segmentation canonical recoding algorithm.

e Finally, in Section 6, these algorithms are compared in terms of the average number of
additions required.

Typeset by ApS-TEX

4 C.K. Kog, C.-Y. Hung

2. m-ARY SEGMENTATION

The m-ary segmentation (radix m) multiplication algorithm utilizes segmentation and prepro-
cessing to reduce the number of additions. We restrict our attention to the case where m is a
power of 2. Computations are performed by grouping bits together: radix 8 (octal) and radix
16 (hexadecimal) cases are well-known and often used. The following procedure describes the
computation of the product using this algorithm.

The m-ary Segmentation Multiplication Algorithm

1. Compute and store wA forall2 < w<m—1.

2. Decompose B into d-bit words B; = (Bjd+d—1 Bjdtd—2 . .- Bjds1 Bja)
for 0 € j < k— 1 where d = log, m and k=25

3. Set P:=0.

4. Repeat step 4a, for j=k—-1,k—-2,...,1,0.
4a. Compute P := m P + B A.

5. End.

For example, when n = 12, m = 8, and d = 3, then

B = (011100101001),
B* = (011), (100), (101), (001).

The above procedure computes P as

P:=(011) A = 34,

P:=mP+(1000A=8P+4A
P=mP+(101)A=8P+5A
P:=mP+(001)A=8P + A.

Since wA does not need to be computed for w = 0 and w = 1, the m-ary segmentation
algorithm requires a total of m — 2 additions in the preprocessing stage. However, we reduce
the number of additions required during the second (add-and-shift) stage by a factor of log, m.
Since the probability that w =0 is "‘nql, the average number of additions required by the m-ary
segmentation algorithm is found as

T:m—2+%(1—%), (1)

where d = log, m. Given n, there exists an optimal m such that the total number of additions is
minimum. In Table 1 we tabulate the optimal d = log, m, for n = 25,27 2%, ... 216,

Table 1. Optimal values of d = log, m.

s 26 a7 28 29 910 211 912 213 ol4 915 916
m-ary 3 3 4 5 5 6 7 8 8 9 10
Adaptive m-ary 3 4 5 5 6 7 7 8 9 10 10
Adaptive m-ary canonical 3 3 4 5 5 6 7 8 8 9 10

3. CANONICAL RECODING

In computing P = AB, we may skip additions whenever the corresponding bit of the multiplier

is zero. Since the average number of zero bits is 5 for an n-bit binary number, the binary

multiplication algorithm requires % addition operations on the average. Recoding techniques
0] P

(Booth recoding, bit-pair recoding, etc.) for sparse representations of binary numbers have been
effectively used [1,2]. For example, the original Booth recoding technique [5] scans the bits of

Adaptive m-ary segmentation and canonical recoding algorithms 5

the multiplier one bit at a time, and adds or subtracts the multiplicand to, or from, the partial
product, depending on the value of the current bit and the previous bit. The modified versions
of the Booth algorithm scan the bits of the multiplier two bits at a time [6] or three bits at a
time [2]. These techniques are equivalent in the sense that a signed-digit representation which is
based on the identity 2F — 1 = 2= 4 ... 4 2! 4+ 2° is used to collapse blocks of ones appearing
in a binary representation. Thus, in a signed-digit number with radix 2, three symbols {0,1,1}
are allowed for the digit set, in which 1 represents —1. A minimal signed-digit number D =
(Dn—1 Dp_2... Dy Dg) that contains no adjacent nonzero digits (i.e., D;-D;_; =0; 0 < i < n—1)
is called a canonical signed-digit number [1,7]. The canonical recoding algorithm uses the truth
table given in Table 2 to recode a two’s complement binary number B = (B,_; By_3... By Bp)
as D = (Dn—l Dy _s...Dy Dg), where D; € {0, 1,1}.

The Canonical Recoding Algorithm

1. Extend the sign bit of B, i.e., set B, = B,_;.
2. Set Cg} = 0.
3. Repeat step 3a, for i =0,1,2,...,n— 1.
3a. Use the truth table in Table 2 to compute D; and C;4.
4. End.

Once the canonical signed-digit representation of B is computed, we can use the add-and-shift
algorithm to compute the product. At the ith step the algorithm adds A or —A to the partial
product if D; = 1 or D; = 1, respectively. If D; = 0 we skip an addition. The average number
of additions required by the canonical recoding multiplication algorithm is equal to the average
number of nonzero digits in the canonically recoded signed-digit number. In the following, we
introduce a Markov chain model for the computation of the average number of nonzero digits.

An n-bit binary number B uniformly distributed in the range [0,2" — 1] can be viewed as
a random process that generates one bit at a time. Each bit assumes a value of zero or
one with equal probability and there is no dependency between any two bits. Thus, we have
P(B: =0) =P(B;i =1) = 3, for 0 < i < n— 1 The signed-digit numbers produced by the
canonical recoding algorithm can be modeled using a finite Markov chain. The state variables of
the Markov chain are defined as the vectors (Bjt1, B;, C;). There are 8 states for the 8 possible
combinations of input, as shown in Table 2. Let (B;41, B;, C;) = (0,0,0) represent state so. We
compute the output (D;, C;41) as (0,0). Thus, the next state is (B;42, Bi11,Ciy1) = (Biy2,0,0).
Since P(Biyz = 0) = P(Biy2 = 1) = 3, the next states are sop = (0,0,0) and s4 = (1,0,0),
having equal probability. The state table given in Table 3 is produced by considering all 8 states
and their successors. Let P;; denote the probability that the successor state of s; is s;, We
find P00 = P04 = % and P0j = 0, for j = 1,2,83,5,6,7, from Table 3. The one-step transition
probability matrix is given as

(/2 0 0 0 1/2 0 0 07
/2 0 0 0 12 0 0 0
/2 0 0 0 1/2 0 0 O
0 1/2 0 o0 0 1/2 0 0
P=lo 0 12 0 0o 0 1/2 0| (2)
o o0 0 1/2 0 0 0 1/2
o 0 0 1/2 0 0 0 1/2
Lo o o0 1/2 0 0 0 1/2]

Let m; be the limiting probability of state s;. The limiting probability for each state is found
by solving the following system of linear equations [8,9]

7P =,

C.K. Kog, C.-Y.

Hunea

Table 2. Canonical recoding,

Multiplier Assumed Recoded Assumed

Bits Carry-in Digit Carry-out
Bij1 B; Ci D; Cit1

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

I 0 0 o 0

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

Table 3. State table for the canonical recoding algorithm.

State Qutput Next State
si (Bis1, Bi, Ci) (Di, Ciga) Bit2 =0 Bij2=1
so (0,0,0) (0,0) 50 s4
51 (0,0,1) (1,0) s 54
82 (0,1,0) (1,0) so 54
53 (0,1,1) (0,1) 51 s5
54 (1,0,0) (0,0) 52 56
55 (1,0,1) (1,1) s3 s7
56 (1,1,0) (1,1) 53 s7
s7 (1,1,1) (0,1) 53 s7

which gives

T=

11
6°12°12°6°6°12°12°6] °

Having computed m; and Pj; for all 0 < 7, j < 7, we can easily prove several interesting and
important properties of the canonical recoding algorithm.

e The probability that a digit in a signed-digit number D is equal to zero is found by
summing the limiting probabilities of the states for which output D; = 0. From Table 3,
we compute this as

e The probability that a digit is nonzero is found as 1 — 2 =

PD;=0)=mp+ma+ma+mr=

2
3
2 _ 1
3 3

(3)

which implies that the

average number of nonzero digits in the canonically recoded binary number D is equal to
%+ Thus, assuming A and —A are given as input, the add-and-shift canonical recoding
binary multiplication algorithm requires

additions on the average.

n

3

(4)

Adaptive m-ary segmentation and canonical recoding algorithms 7

e The probability that D;,; = 0, when D; =0 is found as

nzsjq mo Poj + 73 Paj + T4 Paj + 77 Prj

= 7

P(Diy1 =0 D; =0 : - 5
(Din | Di =0) = o + T3 + Ty + 77 2 (5)

e Finally, the well-known property of the canonical recoding algorithm that
D;+1'D§:0fOIUSfSﬂ—2,

can easily be proven. The probability that D;;; =0, when D; = lor D; =1 forall0 <i < n—1,
is found as

' % 71 P1j + w2 Paj + w5 Ps; + e Ps;j
P(Diz1 = 0| D; =1 or D; = I) = 1Z2347 =1.
(i1 | i or Ly 1} T+ T2 + 75 + 7

4. ADAPTIVE m-ARY SEGMENTATION

The m-ary segmentation multiplication algorithm decomposes the bits of the multiplier into
words of length d = log, m bits each. Since the probability of a word of length d being zero is
2-4, longer words have smaller zero word probabilities. In step 4a of the m-ary segmentation
algorithm, we skip an addition whenever the current word is equal to zero. Thus, as m grows
larger, the probability that we have to perform an addition operation in step 4a gets larger.
However, short word lengths will increase the total number of additions due to Equation (1).

We propose an adaptive scheme that allows zero words of variable-length and improves zero-
word probability while using relatively long words in the segmentation process. The following
procedure recodes the binary number B = (B,,_l Bn_2...B) By), as the concatenation of zero
and nonzero words B* = (Bj_,, Bi_a,. r,B3). We denote the length of a word B} with

(B') We also define W, and W as the sets of zero words and nonzero words, respectlvely The
proposed algonthm recodes the multiplier into zero words of variable length and nonzero words
of length d, i.e.,

L(Bj) =1,2,3,..., if Bf € Wy,
L(B}) =d, if Bf € W1,
for j =0,1,2,...,k— 1. The procedure given below adaptively recodes the multiplier in order to

reduce the average number of additions. In this procedure, ¢ denotes the empty word.

The Adaptive m-ary Segmentation Multiplication Algorithm

1. Compute and store wA for allodd w,3<w<m—1.
2. Set j =0 and By = ¢.
3. Fori=0,1,2,...,n—1, do one of the following:
Case 0. (B} = ¢). Append B; to Bj.
Case 1. (B} € Wy and B; is zero). Append B; to B},
Case 2. (B"‘ € Wy and B; is nonzero). Set j = j+ 1 and B = B;.
Case 3. (B} € Wi and 1 < L(B;) < d—2). Append B; to B*
Case 4. (B; € W, and L(B})=d—1). Append B; to Bj. Set j=j+1and B} = ¢.
4. Set k=j+1and P=0.
5. Repeat Step bafor j=k—-1,k-2,...,1,0.
5a. Compute P = 2155 P 4 B A.
6. End.

For example, for d = 3, we recode B given in Section 2, as

B = (011100101001),
B* = (0), (111), (00), (101), (001).

In order to compute the average number of nonzero words, which represents the number of
additions required during the second stage of the algorithm, we define another Markov chain. As

8 G.K. Kog, C.-Y. Hung

in Section 3, we assume that the uniformly distributed binary number is generated and recoded
bit by bit. State variable § is defined as

S__{o, if B} € W,
LLBy), ifBrew,

i.e., S = 0 when zero words are being collected, and § is equal to the length of the current nonzero
word when nonzero words are being collected. Thus, we have $ =0,1,2,3,...,d. The probability
that state S = j succeeds state S = i is denoted by Pij. Since P(B;=0)=P(B; =1) = 1, we
have i

Poo = Poy = 3

Furthermore, once the first bit is equal to 1, we collect d — 1 more bits to obtain a nonzero word
of length d, which implies
'P;";'+1=1, fOl‘leSd—l.

After all d-bits are collected, depending on the value of B;, the next state is either § = 0 (when
B; =0)or S =1 (when B; = 1), i.e.,

1
Pao =Pa1 = 3

All the other P;; are zero. The transition probability graph is shown in Figure 1. The one-step
transition probability matrix of the adaptive m-ary segmentation algorithm for d = 5 is given as

3 50000
001000
000100
F=10 0001 0 (6)
0000 01
3 $ 0000

Figure 1. Transition probability graph for the adaptive m-ary segmentation algo-
rithm.

Let C be the average number of nonzero words after all n bits have been received. This can be

found by counting the number of transitions from state 0 to state 1. Let P®) denote the i-step
transition probability matrix; then we have

n
c=3"7Q. ()
1=1

The i-step transition probability matrix P is simply found by computing the ith power :Df ’P
An approximation for C' can be given by computing the limiting probability vector =, which is
found by solving the system of linear equations

P =, (8)

Yom=1 9)

Adaptive m-ary segmentation and canonical recoding algorithms 9

This system of linear equations can be written as

o T

T
m Td
3ty =

M = Mi41 fOIlSiSd—l,
TFD+7F1+TI'2+"'+TI'd:]..

Let p=m = m9 = -+ = w4, then we write this system of linear equations as
mp—p=0,
mo+dp=1,

the solution of which give the limiting probabilities as

1
Td+17

Mg =T =7qAg = +--=Tyg

For large n, we can approximate the average number of nonzero words as the number of times

state 1 is visited in n steps, i.e.,
n

d+1 (10)

This approximation is quite accurate, e.g., for d = 3 and n = 64, we have C' = 16.19 and
C = 16.0, and for n = 128, C = 32.19 and C = 32.0. The total number of additions required by
the adaptive m-ary segmentation algorithm is equal to

C~C=

m—2 m—2 n
T=— o — o —. 11
R B e (g
The least significant bit of every nonzero word must be 1. Thus, we need to compute wA only for
w=3,57,...,m—1,ie. 2=2 additions are performed during the preprocessing stage. Similar to

the m-ary segmentation multiplication algorithm, the total number of additions required by the
adaptive m-ary segmentation multiplication algorithm can be minimized with proper selection of
m. The optimal values of d are given in Table 1.

5. ADAPTIVE m-ARY SEGMENTATION CANONICAL RECODING

The canonical recoding algorithm reduces the number of additions, by recoding the multiplier,
to obtain a signed-digit number with fewer nonzero digits [1,7]. On the other hand, the m-ary
segmentation algorithm decomposes the multiplier B into m-ary words, and reduces the average
number of additions by preprocessing certain multiples of multiplicand A. If we combine these
two algorithms, i.e., apply constant-length segmentation to the canonically recoded signed-digit
number, we will not have a satisfactory result, because:

e The probability that a word of length d is zero is much less than %, which is the probability
to have a zero bit in canonically recoded signed-digit number D.

o Compared to m-ary segmentation, the preprocessing time is longer, since there are more
d-digit signed-digit numbers than there are d-bit binary numbers. For example, for d=2,
the set of binary nubmers is {00,01,10,11}, whereas the set of signed-digit numbers is
{00, 01,01, 10, 10}.

Instead, we propose to combine the adaptive m-ary segmentation algorithm and the canonical
recoding algorithm, to obtain the adaptive m-ary segmentation canonical recoding algorithm,
which takes advantage of the increased zero bit probability introduced by canonical recoding
and the reduced total computation time provided by m-ary segmentation. This algorithm ap-
plies adaptive segmentation to the signed-digit number D = (Dp—1 Da—2...D; Do) to obtain
D*=(Dy_, Di_,...D} Dg).

10 G.K. Kog, C.-Y. Hung

The Adaptive m-ary Segmeniation Canonical Recoding Multiplication Algorithm

1. Canonically recode B to obtain D.
2. Compute and store wA for all canonically recoded d-digit numbers,
3.

Execute steps 2-5 of the adaptive m-ary segmentation algorithm using D.
4. End.

For example, we first canonically recode B = (011100101001) to obtain D and then adaptively
decompose D to obtain D* as

B = (011100101001),
D = (100100101001),
D* = (001), (001), (00), (101), (001).

The average number of nonzero words, i.e., the number of additions required in the second stage
of the adaptive m-ary segmentation canonical recoding algorithm, can also be computed with the
aid of the Markov chains. The Markov chain corresponding to the adaptive m-ary segmentation
canonical recoding multiplication algorithm also has d + 1 states. The probability that state 0 is
succeeded by state 0 is equal to Pgg = %, since P(Dij41 =0 | D; =0) = %, due to Equation (5) in
Section 3. Similarly, Pg; = % After d bits have been collected to form a nonzero word, depending
on the value of D;, either state 0 (when D; = 0) or state 1 (when D; = 1 or D; = 1) succeeds
state d. It follows from Equation (3) that we have Pgo = % and Pq1 = é-, for large n.

The transition probability graph of the adaptive m-ary segmentation canonical recoding mul-
tiplication algorithm is shown in Figure 2. The one-step transition probability matrix P of
the adaptive m-ary segmentation canonical recoding multiplication algorithm for d = 5 is given
below.

110000
0 0100 0
lo o010 0
P=log 000 10 (12)
00100 1
210000

4

}
3o

Figure 2. Transition probability graph for the adaptive m-ary segmentation canonical
recoding algorithm.

The average number of nonzero is computed by computing the i-step transition probabil-
ity matrix of the adaptive m-ary segmentation canonical recoding multiplication algorithm for
1 < i < n. Using the technique given in the previous section, we find the approximate value of C
by computing the limiting probabilities of all d 4+ 1 states. The solution of the system of linear
equations given by (8) and (9), using the one-step transition probability matrix P in (12), is

3

aﬂd#l=ﬁ2:--‘=ﬂd=m_

o=
T Bdga

We thus find the approximate value of the average number of nonzero words for the adaptive

m-ary segmentation canonical recoding multiplication algorithm, as

3n

=g

(13)

Adaptive m-ary segmentation and canonical recoding algorithms 11

The preprocessing time for the adaptive m-ary segmentation canonical recoding multiplication
is the time required to compute wA for all canonically recoded binary numbers w with d bits.

Note that the least significant digit of w is either 1 or 1, which implies that w is always an odd
number. The largest positive value of w is

{ (1010...101001) = 3(2%+1 —5), if d is even,
Wmax =
(1010...10101) = L(24+! — 1), if d is odd,

The smallest positive value of w is 1. Also the smallest difference between any two positive w is
equal to 2 (recall that w is always odd). Therefore, the number of d-digit canonically recoded
positive numbers is found as ¥=extl Additionally, there are as many negative w as there are
positive w (the negative numbers are simply obtained by reversing 1’s and 1’s). This implies that
the total number of d-digit canonically recoded is equal to

2
Wmax + l= E [Qd + (_1)d+1]'

First we compute wA where w contains only one nonzero digit. After this, each value wA can
be computed recursively from the already computed values by a single addition. Since A and
—A are already available, it follows that the total number of additions required by the adaptive
m-ary segmentation canonical recoding multiplication algorithm is wyax + 1 — 2+ C, i.e.,

T= % 29 4+ (-1)*t -~ 24-C,
2 3
z§[2d+(-1)d+1]-2+3d_’;4. (14)

Table 4. The average number of additions required by the algorithims.

Algorithm preprocessing stage add-and-shift stage
Canonical - 3
m-ary m—2 2a- %)
Adaptive m-ary 5‘-5'7-3 ﬁ
Adaptive m-ary canonical Zm+ (-1)4+1] -2 3—3‘%

0.4 [T ™ A St

T/n

— = = = eanonlcal
<= - = m-ary
= nduplive m=-ary
re=—-—— ndaplive m-ary cnnonical

logy n

Figure 3. Comparison of the algorithms.

12 C.K. Kog, C.-Y. Hung

6. CONCLUSION

In Table 4 we summarize the average number of additions required by the add-and-shift algo-
rithms. For the m-ary segmentation algorithms, the optimum values of d = log, m are found in
Table 1 for n = 28,27,28,...,2'%. We have not considered the case where n < 64, since there ex-
ists fast multiplier circuits to multiply binary numbers with 32,56, or 64 bits [1,2]. Furthermore,
most advanced microprocessors can multiply integers as large as 2°4. The algorithms presented
in this paper can be used for the multiplication of large binary numbers, particularly numbers
with several hundred bits. There exist asymptotically faster algorithms for multiplication, e.g.,
the Toom-Cook algorithm and the Schénhage-Strassen algorithm [10]. However, segmentation
and canonical recoding methods are easier to implement, do not require recursive computation
or use of Fast Fourier Transform; the overhead is negligible.

Using the optimal values of d, the average number of additions required by the algorithms are
plotted in Figure 3. We see that:

o When n is large (i.e., n > 64), the variable-length segmentation strategy is clearly superior
to the constant-length segmentation.

e The canonical recoding algorithm requires fewer additions than the m-ary segmentation
algorithm for n < 128. The adaptive m-ary segmentation algorithms require the fewest
number of additions for all n > 64.

e For n > 64, the average number of additions required by the adaptive m-ary segmentation
algorithm is approximately the same as that of the adaptive m-ary segmentation canonical
recoding algorithm. Thus, when n > 64, if the adaptive segmentation strategy is applied,
there is no need to canonically recode the multiplier.

REFERENCES

1. K. Hwang, Computer Arithmetic, Principles, Architecture, and Design, John Wiley and Sons, Inc., (1979).

2. S. Waser and M. J. Flynn, Introduction to Arithmetic for Digital System Designers, Holt, Rinehart and
Winston, CBS College Publishing, (1982).

3. L. Dadda, On parallel digital multipliers, Afa Frequenze 45, 574-580 (1976). (Also reprinted in [11], pp.
126-132).

4. W. 1. Stenzel, W. J. Jubitz and G. H. Garcia, A compact high speed parallel multiplication scheme, IEEE
Transactions on Computers 26 (10), 948-957 (October 1977). (Also reprinted in [11], pp. 133-142).

5. A.D. Booth, A signed binary multiplication technique, Q. J. Mech. Appl. Math. 4 (2), 236-240 (1951).
(Also reprinted in [11], pp. 100-104).

6. O. L. MacSerley, High-speed arithmetic in binary computers, Proceedings of the IRE 49, 67-91 (January
1961). (Also reprinted in [11], pp. 14-38).

7. G. W. Reitwiesner, Binary Arithmetic, Advances in Computers 1, 231-308 (1960).

8. J. G. Kemeny and J. L. Snell, Finite Markov Chains, Springer-Verlag, (1978).

9. S. M. Ross, Introduction to Probability Models, Academic Press, 3rd edition, (1985).

0. D. E. Knuth, The Art of Computer Programming, Volume 2, Seminumerical Algorithms, Addison-Wesley
Publishing Co., 2nd edition, (1981).

11. E. E. Swartzlander, Ed., Computer Arithmetic. Benchmark Papers in Electrical Engineering and Computer
Science, Vol. 21, Dowden, Hutchinson & Ross, Inc., (1980).

