Journal of VLSI Signal Processing, 3, 215-223 (1991)
@ 1991 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Bit-Level Systolic Arrays for Modular Multiplication

CETIN K. KOC AND CHING YU HUNG
Department of Electrical Engineering, University of Houston, Houston, TX 77204

Received October 30, 1990, Revised January 15, 1991

Abstract. This paper presents bit-level cellular arrays implementing Blakley’s algorithm for multiplication of two
n-bit integers modulo another n-bit integer. The semi-systolic version uses 3n(n + 3) single-bit carry save adders
and 2n copies of 3-bit carry look-ahead logic, and computes a pair of binary numbers (C, S) in 3n clock cycles
such that C + S € [0, 2N). The carry look-ahead logic is used to estimate the sign of the partial product, which
is needed during the reduction process. The final result in the correct range [0, N) can easily be obtained by com-
puting C + Sand C + § — N, and selecting the latter if it is positive; otherwise, the former is selected. We
construct a localized process dependence graph of this algorithm, and introduce a systolic array containing 3nw
simple adder cells. The latency of the systolic array is 6n + w — 2, where w = [n/2]. The systolic version
does not require broadcast and can be used to efficiently compute several modular multiplications in a pipelined

fashion, producing a result in every clock cycle.

Key Words: modular multiplication, carry save adders, sign estimation, systolic array, scheduling.

1. Introduction

Realization of some public key cryptosystems and
authentication schemes using number-theoretic con-
cepts, e.g., the RSA algorithm [1], and interactive
computation protocols based on the quadratic residue
problem [2], [3] requires fast computation of modular
multiplication, i.e., the computation of

P = AB (mod N), ()

for large positive integers A, B, and N. The security
of the system is ensured by selecting operands having
more than 200 decimal digits (664 bits). This require-
ment prohibits the use of table look-up techniques
developed for the implementation of digital signal proc-
essing algorithms employing residue arithmetic [4]. Ad-
ditionally, implementation of the cryptographic systems
requires that the above computation be performed for
several different values of ¥, whereas the classical ap-
plications of residue number systems use a fixed moduli
set.

The computation of (1) can be achieved by first form-
ing the product 4B and then reducing it modulo N with
a division. This method requires multiplication of two
n-bit integers and division of a 2n-bit integer by an #-
bit integer. There exists a large volume of fast
algorithms and hardware structures for binary
multiplication and division [5], [6], which could be
utilized for computing (1). However, since we are not

interested in the quotient, the reduction process is ac-
tually simpler than a division. For example, Simmons
and Tavares describe an algorithm and its NMOS im-
plementation, which subtracts left-shifted versions of
the modulus from the product in order to speed up the
reduction process [7].

The shift-add steps of the multiplication process can
also be interleaved with modular reduction [8], [9],
[10]. This technique computes the product in n steps,
where at each step one left shift, one addition, and at
most two subtractions are performed.

The authors of this paper have proposed an
algorithm in [11] for multi-operand modular addition

k
S = Z X; (mod N),

i=1
given integers Nand X; < Nfor | < i < k. The al-
gorithm is based on Blakley’s algorithm, and uses carry
save addition and a novel technique for sign estimation,
which is required during the reduction process. The
modular reduction part of the algorithm is applied to
modular multiplication to produce a word-serial, bit-
parallel modular multiplier array [12].

In this paper, we review the use of carry save adders
and give a rigorous analysis of the sign estimation
technique. We then describe a semi-systolic multiplier
array for modular multiplication which is a modified
version of the one in [12]. The semi-systolic array

216 Koc and Hung

contains 31 rows of n 4+ 3 single-bit carry save adder
cells and 2n copies of 3-bit carry look-ahead logic. The
array accepts the binary numbers A, B, and —N as the
input. After 3n clock cycles, a pair of integers (C, S)
is produced such that C + S € [0, 2N). This result can
be reduced to the correct range [0, N) by computing
C + Sand C + § — N using carry propagate adders,
and selecting the latter if it is positive; otherwise, the
former is selected. The latency of the array is equal
to 3n, however, when several modular multiplications
are computed in a pipelined fashion, the data rate is
equal to the clock rate, i.e., a result is obtained at every
clock cycle.

The semi-systolic array requires broadcasting the bits
of A and the estimated sign bit across n + 3 cells; this
would increase the duration of the clock due to signal
propagation, and thus, decrease throughput rate. In this
paper, we introduce a bit-level systolic array which re-
quires only local communication, and thus, is more
suitable for implementation in VLSI. The systolic
modular multiplier is derived from the semi-systolic
array by first constructing a localized process
dependence directed acyclic graph (dag), and then
embedding this dag in spacetime in order to obtain a
systolic schedule. The resulting systolic array contains
3nw adder cells, and has a latency of 6n + w — 2,
where w = [n/2] .

2. Carry Save Adders and Sign Estimation
Technique

Blakley’s algorithm for the computation of (1) is based
on the application of Horner’s method. In the follow-
ing A; denotes the ith bit of A, and n is the number of
bits of modulus N, i.e., n = [log, N| + 1

Algorithm A

1. Set PV := 0.

2. Repeat 2a and 2b fori = 1,2, 3, ..., n.
2a. PY ;= 2PV 4 4. _.B.
2b. PY .= PO (mod N).

3. End.

In Step 2a, we perform a left shift on the previous
partial product P“~V, and add the value 4, _;B to ob-
tain P, Then in Step 2b, P is reduced to the range
[0, N). The final value of the partial product is equal
to P = P = AB (mod N). After the ith iteration of
Step 2, we obtain 0 = PY < N, and thus, in the
following step we have 0 < < PO*D < 3N, This im-
plies that at most two subtractions have to be performed
to reduce the partial product to the desired range [0, N).

Steps 2a and 2b of the algorithm require addition
of n-bit numbers, which takes O(n) time (gate delays)
for the propagation of the carry from the least signifi-
cant bit to the most significant bit. This delay should
be avoided when n is large.

We propose the use of the word-serial, bit-parallel
carry save adder (one-level CSA) [5] which, in one
clock cycle, produces two r-bit numbers C and S from
three n-bit numbers X, Y, and Z, such that C + § =
X + Y + Z. The addition and subtraction in Algorithm
A can be implemented using carry save adders, where
the pair (C, S) represents the partial product P = C + S.
The modular reduction operation in Step 2b requires
a comparison operation and then a subtraction. Equiv-
alently, we may compute the difference P=P—-N
first and then set Pto P if P = 0. The subtraction can
be computed in one clock cycle using a carry save ad-
der. However, testing the sign of P, which is in the
form of a carry-sum pair, requires the addition of two
n-bit numbers (carry and sum), and thus takes O(n)
gate delays when a carry propagate adder is used. In
the following, we introduce a technique which requires
only O(1) gate delays to estimate the sign of the par-
tial product represented by a carry-sum pair.

If the exact sign of C + § is computed, we can ob-
tain the result in the correct range [0, N). If an estima-
tion of the sign is used, then we will prove that the
range of the result becomes [0, N + A), where A
depends on the precision of the estimation. Further-
more, since the sign is used to decide whether some
multiple of N should be subtracted from the partial
product, an error in the decision causes only an error
of a multiple of N in the partial product, which is cor-
rected later,

We define function T(X) on an n-bit integer X as

TX) = X — (X mod 2), ©))

where 0 =< r < n — 1. In other words, T replaces the
first least significant ¢ bits of X with ¢ zeros. This implies

X)) = X < T(X) + 20 (3)

‘We reduce the pair (C, S) by performing the following
operation O times:

A.(C§:=C+5~-N.
B. If (C) + T(S) = O then set C :=

In Step B, the computation of the sign bit R of T(C')
+ T(S) involves m — ¢ most significant bits of C and
S. The above procedure reduces a carry-sum pair from
the range

Cand S:= S.

Bit-Level Systolic Arrays for Modular Multiplication 217

0= C+ 8 <(@+DN+2
to the range
0 < Cr+ Sg <N+ 2,

where (Cp, Sp) and (Cg, Sg) respectively denote the
initial and the final carry-sum pair. In the following we
prove this assertion.

Since the function T always underestimates, the
result is never over-reduced, i.e.,

CodSs 20

If the estimated sign in Step B is positive for all Q itera-
tions, then QN is subtracted from the initial pair;
therefore

If the estimated sign becomes negative in an iteration,
it stays negative thereafter to the last iteration. Thus,
the condition

7€) + TS < 0
in the last iteration of Step B implies that
¢ + 1) = -2, @
since T(X) is always a multiple of 2. By applying (3)
to C and S, we have
e + 18 < €+ § < TG + TS + 2.
It follows from the above equation and (4) that
C+8§ <2t —20=2"

Since in Step A we perform (C‘, .§) =C+ 85— Nand
in the last iteration the carry-sum pair is not reduced
(because the estimated sign is negative), we must have

Ce + Sg=C+8 +N,
which implies
Cp + Sp < N+ 2,

The modular reduction procedure described above
subtracts N from (C, §) in each of the Q iterations. The
procedure can be improved in speed by subtracting
257IN during iteration j, where (Q + 1) < 2%andj =
1,2,3, ..., k. For example, if O =3, thenk =2
can be used. Instead of subtracting N three times, we
first subtract 2N and then N. This observation is utilized
in the following algorithm:

Algorithm B
1. Set S := 0 and C© := 0.
2. Repeat 2a, 2b, and2cfori=1,2,3,0

2a. (C®, §9 .= 2¢%Y + 25¢Y + 4, B.

2b. (€9, §®) := C? + §O — 2N,
If T(CP + T(SP) = 0, then set C¥ := C% and
SO .= §O,
2¢. (€9, §9 .= C? + §9) — N.
It TWCD) + T(ED) = 0, then set €V := C¥
and SO ;= §0.
3. End.
The parameter ¢ controls the precision of estimation;
the accuracy of the estimation and the total amount of
logic required to implement it decreases as increases.
After Step 2c, we have

c” + 8O < N+ 2,

which implies that after the next shift-add step the range
of C*Y + SED will be [0, 3N + 2*'). Assuming
Q = 3, we have

AN + 271 < (@ 4+ DN + 2" =4N + 2/,

which implies 2 = N, or¢ = n — 1. The range of
Ci*) 4 SO pecomes

0= CF+D 4+ §6+D < 3N + 2% < 3N+ 2" < 2",
and after Step 2b, the range will be
—9n*l = QN = COFD 4 S < N+ 2" < 2"

In order to contain the temporary results, we use (7
+ 3)-bit carry save adders which can represent integers
in the range [-gnH2 272y, When t = n — 1, the sign
estimation technique checks 5 most significant bits of
C% and S from the bit locations n — 2 to n + 3.

Algorithm B produces a pair of integers (C, §) =
(", $"such that P = C + S is in the range [0, ZN).
The final result in the correct range [0, N) can be ob-
tained by computing P = C + Sand P = C+ 85—
N using carry propagate adders. If P < 0, we have P
= P + N < N, and thus P is in the correct range.
Otherwise, we choose Pbecanse0 «s P=P—-N<
2 < N implies P € [0, N).

The steps of Algorithm B computing 47 - 48 (mod
50) are illustrated in figure 1. Here n = | log,(50) |
+ 1 = 6, and the algorithm computes (C, §) =
(010111000, 110000000) = (184, —128) in 3n = 18
clock cycles. The range of C + § = 184 — 128 =
56 is [0, 2 + 50). The final result is found by computing
C+S=56and C+ S — N =6, and selecting the
latter since it is positive.

3. Semi-Systolic Array

The carry save adder structure shown in figure 2 im-
plements an instance of Step 2. The semi-systolic

218 Koc and Hung

c 5 5 3 T(C)+ T(5)
i=10 000000000 | 000000000 - -
2a || 000000000 | 000110000 - - -
i=1 | 2b || 000000000 | 000110000 (| 000100000 | 110101100 || 111000000
2¢ || 000000000 | 000110000 || 000000000 | 111111110 || 111100000
2a || 000000000 | 001100000 e = -
i=2 | 2b || cooocoo0o | n01100000 || 000000000 | 111111100 || 111100000
2¢ || 010000000 | 110101110 || 010000000 | 110101110 000100000
2a || 000100000 | 001101100 - - -
i=3 | 2b || 001011000 | 11101000C || 001011000 | 111010000 000000000
2¢ || 001011000 | 111010000 || 110110000 | 001000110 || 111100000
2a || 101100000 | 100100000 B - -
i=4 | 2b | 001000000 | 111011100 | 001000000 | 111011100 || 000000000
2¢ || oo1000000 | 111011100 || 110011000 | 601010010 || 111000000
2a || 101100000 | 100001000 - - -
i=5 | 2t || 101100000 | 100001000 || 000010000 | 111110100 111100000
2¢ || 010010000 | 110100110 || 010010000 | 110100110 000100000
2a || 00LOOOOOO | 001011100 = - =
i=6 | 2b || 010111000 | 110000000 (| 010111000 | 110000000 000100000
2¢ || 010111000 | 110000000 || 100010000 | 011110110 111100000

Fig. 1. An example illustrating Algorithm B for n = 6. The algorithm computes P = A * B (mod N) where A = 47 = (000101111), B =
48 = (000110000), N = 50 = (000110010), and M = —N = (111001110). The final value of the carry-sum pair is found as (C, §) =

(184, —128), which gives C + S = 184 — 128 = 56 € [0, 2 * 50).

multiplier array is constructed by cascading n copies
of this structure. The functions of the cells are also
described in figure 2. The bits of B and M (= —N)
enter from the north-end in a word-serial, bit-parallel
fashion. The skewed bits of A enter the array from the
west, however, as soon as A,_; enters, it is broadcast
toall n + 3 cells in that row. The first row of the struc-
ture shown in figure 2 implements Step 2a, while the
remaining two rows implement Step 2b and Step 2c,
respectively. First, temporary values ¢ and §© are
computed. The 3-bit carry look-ahead logic (cell L)
receives the most significant 5 bits of C and §% (bit
locations n — 2, n — 1, ..., n + 2 corresponding to
Y and U cells) and computes the sign bit R. The sign
bit is broadcast to all ¥, Z, U, and W cells as soon as
it is computed: If the estimated sign is positive (i.e.,
R = 0), then the temporary values are taken to be
primary values for the next cycle. At the end of 3n clock
cycles, the pair (C, S) is produced such that C + S €
[0, 2N).

The array is suitable for computing several modular
multiplications given the sequences of integers (4, B,
N), (4, B, N"), (A", B", N"), and so on. Figure 3 illus-
trates the use of the semi-systolic array for computing
several modular multiplications. At the end of 3n clock

cycles, the pair (C, S) corresponding to the input se-
quence A, B, and N exits the array from the south-end.
The second result, the pair (C’, §') corresponding to
the next input sequence A', B, and N, follows the first
one after a single clock cycle. The latency of the pipe
is equal to 3n, however, if the pipe is full at all times,
the data rate will be equal to the clock rate.

The semi-systolic array requires broadcasting of the
bits of A and the sign bit R to all cells in each row. This
requirement severely limits high-throughput when n is
very large. In the following, we give a design which
achieves communication locality at the expense of in-
creasing the latency.

4, Systolic Array

The broadcasting requirement of the above multiplier
array can be removed by latching each single bit of 4
as it enters from the west (and moves horizontally to
the east). Additionally, the estimated sign bit R also
needs to be latched between the cells. This technique,
however, requires a reordering (rescheduling) of the
computations performed in the nodes. Techniques have
been developed for designing systolic schedules, given
some representation of the algorithm (see [13] and the

Bit-Level Systolic Arrays for Modular Multiplication 219

M,B
s
c
(9‘_7_ fid 1 4 ' =(AB)S +({AB)C | 5C
S y i
€% (n-2<i<n+1?) 5'=(AB) &S 40
= Susz ® Cnys @ [Grga + CuPrys + Onos PaPosi] ;
where B, =C,_ 1+ .§‘ and &y = é"_ |§‘ M. M B, 5
MBS e M,B,S o
C=MS+MC+5C
R R S§=Mapsac 7 " ¢ = R(M'S+ M'C)+ 5C
¢, § ¢85 = RC+R(SC) 5 =(RMY®s5aC
§=R5+R5GC)
¢ MBS TN N1
M, B5 o MBS
C=MS4+MC+S5C
R R S$=MaSaC i & = R{ME + M)+ 5C
e, 5 €,5 ¢ =RC+ R(5C) S'=(RM): 51 C
o § = RS+ R{(5nC) o
5 M B s M B

Fig. 2. An instance of the semi-systolic array implementing Blakley’s algorithm for n = 8. The decimal numbers in parentheses indicate bit
locations. The cell definitions also follow, where @ stands for exclusive-OR and R represents the logical complement of the boolean variable
R. The black dots indicate that the variables are latched at the output of a cell. The unlatched variables are the bits of A, the estimated sign
bit R, and the most significant 5 bits of € and §.

(1,00 | (1,09 | (1,00 | (M, BY) | (M3 BY) | (MY BY) | (18, By)
(1,00 | (1,00 | (1,0} | (M4, By) | (M5, B3) | (MLBY) | (Mg, B
{(1,0) | (1,0) | (1,0) | (Ma,Bs) | (M2, Ba) | (M1, B1) | (Mo, Bo)
AT AL Az] 0 0 0 0 0 0 0
1 1 1 1 1 1 1
2 2 2 2 4 2 2
AU AL Ay - 3 3 3 3 3 3 3
4 4 4 a 4 4 4
a 5 5 1]] bl 5
A AL Ay i 6 6 [} 6 [[6
7 T 7 7 7 7 7
8 8 8 8 8 8 8
T] 9 9] [0 9
10 | 10 10 10 10 10 10
11 i | Gk 11 il 11 11
(cy.55) | (cq,8y) | (C1,57) | (G0, S0)
(Ch,84) | (C5.5:) | (G151 | (CoSa)
(C3,83) | (€2,82) | (€1.851) | (Co, S}

Fig. 3. The use of the semi-systolic array of size n = 4 to compute several modular multiplications. The array has 3n = 12 rows of n +
3 = 7 simple adder cells, and the latency is equal to 3n = 12. The boldface numbers show the time steps at which the cells execute, and

the dot (+) represents a single delay.

220 Koc and Hung

references therein). In general, a systolic schedule (and
its corresponding array) is produced by first construct-
ing a localized process dependence dag of the algo-
rithm, and then by mapping the process dependence
dag in spacetime,

Since the sign estimation function requires the most
significant 5 bits of the intermediate result (C‘, S’], we
merge a single L cell (carry look-ahead logic) and 5
left-most Y cells into a single supercell named LY=
Similarly, a single L and 5 left-most U cells are also
merged to obtain a supercell named LUS Also, we
merge 5 left-most X cells to obtain a single X5 supercell.
The remaining X, Z, and W cells are untouched. This
merging process helps to achieve communication local-
ity. After this assignment, the dag contains 2n rows
where each row has n — 1 cells,

We draw the process dependence dag in the (7, j)
coordinate system where / is the abscissa (which in-
creases from the east to the west) and j is the ordinate
(which increases from the north to the south). In this
coordinate system, the top-most row and the right-most
column are indexed with i = 0 and j = 0, respectively.
The process dependence dag and the coordinate system
are shown in figure 4. The arcs of the dag are given as:

(—1, 0) corresponds to R,

(0, 1) corresponds to B,
S fromj =0 + 3k, 1 + 3k,
M fromj =0 + 3k, {1 + 3k,
2 + 3k,

(1, 1) corresponds to C fromj =0 + 3k, | + 3k,
S fromj = 2 + 3k,
M from j = 0 + 3%,

(2, 1) corresponds to C from j = 2 + 3k,

where 0 < k& < n — 1. Since arc (2, 1) connects rows
j=2+3kandj=0+3kfork=0,1, ...,n —
1, the dag in figure 4 is not homogeneous (see [13] for
definitions), A homogeneous dag can be obtained by
grouping two X cells into a supercell, named X2 The
same process forms Z? and W? supercells. This group-
ing transforms arc (2, 1) into (1, 1), thus giving the new
set of arcs as

E {(‘_‘]; 0)1 (Ov ”: (l$ I}}

Also note that the width of the dag shrinks to w =
[7/27] . The resulting dag is shown in figure 5. The
hyperplanes, or the equi-temporal hyperplanes, are
parallel planes on the process dependence dag such that
all processes (nodes) on the same hyperplane are proc-
essed at the same time [13]. The schedule vector is the

(%]
=

4in-2

Fig. 4. The process dependence dag drawn in the coordinate system (Z, j). The dag is not homogeneous due to the arcs between some cells,

e.g., (0, 2) and (2, 3).

Bit-Level Systolic Arrays for Modular Multiplication

221

Fig. 5. The homogeneous process dependence dag drawn in the coordinate system (i, j).

vector normal to the hyperplanes, which must obey
causality and local connectivity, i.e., for all (i, j) € E,

ai + bj > 0,

where a and b are the components of the schedule vec-
tor (a, b). The above inequality implies

a* () +b-0) =-a>0
a () +b-©0=b>0
a-()+b-(1)=a+b>0.

Thus, the components of a permissible schedule vec-
tor, i.e., the integers a and b, must satisfy

a < O0andb > |al. (&)

The optimal values of (a, b), are those for which the
latency of the systolic array is minimum. The schedule
function #(i, j) gives the time step (clock cycle) ¢ at
which the process (7, j) is executed. It is written as

Wi, jy =ai + bj + ¢,

where ¢ is an integer constant. The latency of the
systolic array is the total number of cycles required to
compute the entire array of processes:

L=ty —the+1=00,3n—-1)—tw-1,0)
+1=b-GBn—-1)—a*(w-=1 + 1.

The optimal values of a and & satisfy the constraints
given by (5) and minimize the above equation. It is
easily found by enumeration that (a, b) = (—1, 2),
which gives the minimum value of the latency as

(6)

The constant value ¢ is determined by scheduling the
first node to be processed to time step zero. The node
indexed with (i, j) = (w — 1, 0) is the first process
to be executed, i.e.,

Lipin =60 +w — 2,

tw—1,0=—-(w—-1)+¢c =0,

which gives ¢ = w — 1, thus the schedule function is
found as

i, p)=—-i+2j+w-—1. @)

We should add that the above schedule is by no
means the only one: there exist many (linear or
nonlinear) schedules corresponding to the process
dependence dag given in figure 5. However, the linear
schedule given by (7) is simple and easy to implement.
Figure 6 illustrates the input and output pattern of the
systolic array computing several modular multipli-
cations.

222

Koc and Hung

. (M, BY, M), BY)
; (MY, BY,MYBYY | (M), B, MY, B
(MY, BY MY BYY | (MS B ML B | (Ma, By, Mo, Bo)
(MZ, BS, M}, BY) | (M, Ba, M3, Ba) '
(Mz, Bs, M, B)
Ay, AL As 0 1 2
2 3 4
1 5 6
A AL Ay e 6 x a
8 1] 10
10 11 12
A, A g oo it 12 L 4
14 15 16
16 17 18
A AL Ag sreein b e 18 19 24
20 21 22
22 23 24
ATLAY Ay e e e e 24 25 26
26 27 28
28 29 a0
A’O’, AJD‘ A e SRR A S 30 31 32
a2 33 34
34 a5 36 |
; (€51 572 Gty 5o
: (€3, 55, €5, 53) (€1, 8, Chy San)
(L, 80, Cl, 8 (€, 55, 05, 55) (€1, 51, Co, Sn)
(65850488 (€4, 53, Ca, 52) :
(Cy, 85, Cay Sa) .

Fig. 6 The use of the systolic array of size # = 6 to compute several modular multiplications. The array has 3n = 18 rows of w= [nf2]
= 3 adder cells, and the latency is equal to 6n + w — 2 = 37. The boldface numbers show the time steps at which the cells execute, and

the dot (*) represents a single delay.

5. Conclusions

We have presented a bit-level systolic array implemen-
ting Blakley’s algorithm for modular multiplication. It
consists of 3nw small adder cells and computes a single
modular multiplication in 6n + w — 2 clock cycles.
Compared to the semi-systolic array, the systolic ver-
sion requires more delay elements and has longer
latency in terms of clock cycles: 6n + [n/2] — 2 ver-
sus 3n. However, the systolic array is free of broad-
cast, and therefore, can operate with a much higher
clock rate.

This array can be used to implement certain interac-
tive computation protocols and cryptosystems. The RSA
algorithm requires the computation of modular ex-
ponentiation which is broken into a succession of
modular multiplications by the application of the binary
method [14]. A survey of hardware implementations of
the RSA algorithm is given in [15]. A systolic array im-
plementing the RSA algorithm, which uses systolic
modular multipliers as building blocks, was reported
in [16]. The systolic modular multiplier presented in
this paper is suitable for such implementation.

As a future topic of study, we point out an algorithm
by Brickell for implementing modular multiplication
using delayed carry save adders [17]. Instead of (1),
Brickell’s technique computes 2!°P = 2!'%4B (mod 2!°N)
in n + 7 clock cycles using n + 11 arithmetic cells.
Recently, it was noted by Forster et al. in [18] that Kog
and Hung’s sign estimation algorithm and Brickell’s
delayed carry save adder technique can be utilized to
perform modular multiplication in only n time steps.
Thus, it seems worthwhile to investigate whether this
strategy would yield efficient systolic arrays implement-
ing Brickell’s algorithm.

References

1. R.L. Rivest, A. Shamir, and L. Adleman, ‘A method for ob-
taining digital signatures and public-key cryptosystems.” Com-
munications of the ACM, 21, 1978, pp. 120-126.

2. A.G. Konheim, Cryptography, A Primer. New York: John Wiley,
1981.

3. N. Koblitz, “A Course in Number Theory and Cryptography, New
York: Springer-Verlag, 1987.

Bit-Level Systolic Arrays for Modular Multiplication ~ 223

4. M.A. Soderstrand, W.K. Jenkins, G.A. Jullien, and EI., Taylor,
(ed.), Residue Arithmetic: Modern Applications in Digital Signat
Processing. New York: IEEE Press, 1986,

5. K. Hwang, Computer Arithmetic, Principles, Architecture, and
Design. New York: John Wiley, 1979,

6. E.E. Swartzlander, (ed.), Computer Arithmetic, vol. 1 and [1.
Los Alamitos: IEEE Computer Socicty Press, 1990.

7. D. Simmons and S.E. Tavares, “An NMOS implementation of
a large number modulo multiplier for data encryption systems.”
In Proceedings of the 1983 IEEE Custom Intezrated Circuits Con-
Jerence, Rochester, New York: IEEE Press, 1983, pp. 262-266.

8. G.R. Blakley, “A computer algorithm for the product AB modulo
M." IEEE Transactions on Computers, 32, 1983, pp. 497-500.

9. K.R. Sloan, Jr. “Comments on: ‘A computer algorithm for the
product AB modulo M " IEEE Transactions on Computers,
34, 1985, pp. 290-292.

10. PW. Baker, “Fast computation of 4 # B modulo N, Electronics
Lerters, 23, 1987, pp. 794-795.

1. G.K. Kog and C.Y. Hung, “Multi-operand modulo addition us-
ing carry save adders.” Electronics Letters, 26, 1990, pp. 361-363.

12. C.K. Koc and CYY. Hung, “Carry save adders for compuling the
product AB modulo N Electronics Leters, 26, 1990, PP
899-900,

13. 8.Y. Kung, “VLSI Array Processors” Englewood Cliffs, NJ:
Prentice-Hall, 1988.

14. D.E. Knuth. “The Art of Computer Programming: Seminumericat
Algorithms,” vol. 2. Reading, MA: Addison-Wesley, (2nd ed.),
1981.

I5. E.E Brickell, “A survey of hardware implementations of RSA
In (G. Brassard, ed.) Advances in Cryptology— Crypto 89, Pro-
ceedings, Lecture Notes in Computer Science, No. 435, New
York: Springer-Verlag, 1989, pp. 368-370.

16. C.N. Zhang, H.L. Martin, and DY.Y. Yun, “‘Parallel algorithms
and systolic arrays designs for RSA cryptosystem.” In (K.
Bromley, S.Y. Kung, and E. Swartzlander, ed., Proceedings of
the International Conference on Systolic Arrays, San Diego,
California, Los Alamitos; 1EEE Computer Society Press, 1988,
pp. 341-350.

17. E.E Brickell, “A fast modular multiplication algorithm with ap-
plication to two key cryptography.” In (D. Chaum, R.L. Rivest.
and A.T. Sherman, ed.) Advances in Cryptology, Proceedings
of Crypto 82, New York: Plenum Press, 1982, pp. 51-60.

18. C.H.N. Forster, S.S. Dlay, and R.N. Gorgui-Naguib, “Carry
delayed save adders for computing the product AB modulo N
in log, N steps.” Electronics Letters, 26, 1990, pp. 1544-1545,

Cetin Kaya Kog has been an Assistant Professor in the Department
of Electrical Engineering at the University of Houston since June
1988. He received his B.S. (1980, Highest Honors) and M.S. (1982)
degrees in Electrical Engineering from Istanbul Technical University
and his M.S. (1985) and Ph.D. (1988) degrees in Electrical and Com-
puter Engineering from the University of California, Santa Barbara.
His research interests include parallel computation, computer
arithmetic, cryptography, and scientific computing,

Ching Yu Hung received his B.S. degree from the National Tajwan
University in 1986 and his M.S. degree from the University of
Houston in December 1990, both in Electrical Engineering. He is
now a graduate student pursuing a Ph.D. degree in the Department
of Electrical and Computer Engineering at the University of Cali-
fornia, Santa Barbara. His research interests include computer
arithmetic, parallel architectures, and algorithms,

