
Impacts of Mathematical Optimizations on
Reinforcement Learning Policy Performance

Sam Green‡∗, Craig M. Vineyard‡, Çetin Kaya Koç∗
‡Sandia National Laboratories, Albuquerque, New Mexico, USA

{sgreen, cmviney}@sandia.gov
∗University of California Santa Barbara, Santa Barbara, California, USA

cetinkoc@ucsb.edu

Abstract—Deep neural networks (DNN) now outperform com-
peting methods in many academic and industrial domains. These
high-capacity universal function approximators have recently
been leveraged by deep reinforcement learning (RL) algorithms
to obtain impressive results for many control and decision
making problems. During the past three years, research toward
pruning, quantization, and compression of DNNs has reduced
the mathematical, and therefore time and energy, requirements of
DNN-based inference. For example, DNN optimization techniques
have been developed which reduce storage requirements of VGG-
16 from 552MB to 11.3MB, while maintaining the full-model ac-
curacy for image classification. Building from DNN optimization
results, the computer architecture community is taking increasing
interest in exploring DNN hardware accelerator designs. Based
on recent deep RL performance, we expect hardware designers to
begin considering architectures appropriate for accelerating these
algorithms too. However, it is currently unknown how, when,
or if the “noise” introduced by DNN optimization techniques
will degrade deep RL performance. This work measures these
impacts, using standard OpenAI Gym benchmarks. Our results
show that mathematically optimized RL policies can perform
equally to full-precision RL, while requiring substantially less
computation. We also observe that different optimizations are
better suited than others for different problem domains. By be-
ginning to understand the impacts of mathematical optimizations
on RL policy performance, this work serves as a starting point
toward the development of low power or high performance deep
RL accelerators.

I. INTRODUCTION

Reinforcement learning (RL) is a family of control tech-
niques which arose from a combination of applying psy-
chological models of operant conditioning with mathematical
techniques of dynamic programming [26]. In RL, there is
an agent that makes actions, given state observations from
an environment; the environment subsequently emits rewards
and new state observations, based on the agent’s actions.
The agent’s policy π maps state observations to actions. The
agent’s objective is to discover an optimal policy π∗, via
experience, which chooses actions that will maximize the
amount of rewards it can induce from the environment. An
illustration of this paradigm is shown in Fig. 1.

Formally, the goal of an agent is to find an optimal policy
π∗ which maximizes expected sum of rewards over some
sequence of (state, action) pairs; this is represented as:

π∗ = argmax
π

Eτ∼π(τ)
[∑

t

r(st, at)

]
(1)

Fig. 1: Reinforcement learning computational paradigm. Based
on state observations, an agent makes actions on the environ-
ment with the goal of collecting rewards.

where the rollout τ represents a sequence of states and actions,
r is a function mapping states s and actions a to rewards, and
t ranges across time steps in the rollout.

All RL techniques are devoted to solving the optimization
problem given in Eq. 1. The basic methods of RL have been
developed over the past several decades, but RL algorithms
making use of function approximation did not work very
well. However, in 2013, DeepMind utilized the high-capacity
function approximation capabilities of deep neural networks
(DNN) to learn a mapping from states to action selections—
effectively learning a policy. By doing so, in their seminal
Atari-dominating RL work, agents learned to play many
Atari video games at superhuman levels of performance [19].
Since then, there has been a regular stream of RL algorithm
improvements [17, 18, 23, 24], with successful application to
diverse problems, including solving the game of Go [25] and
robotics [3]. The application space of deep RL has naturally
lagged behind theoretical results, and we expect to see further
real-world results in the future. Following results, there will
be increasing interest in hardware optimized for deep RL.

As hardware implementations of RL are pursued, it is only
natural to build upon the optimization techniques being devel-
oped for the hardware instantiation of DNNs. Whether these
techniques can be readily applied without loss of performance
is unknown and is the question this research is beginning to
explore. As follows, we will give an brief overview of RL,
describe mathematical optimization techniques which have
been applied to DNNs, and then provide our insights of the
resulting impact of applying these techniques to RL policies.

978-1-5090-6014-6/18/$31.00 ©2018 IEEE

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on May 19,2021 at 20:12:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Reinforcement learning taxonomy of approaches. This
work is focused on a policy-based method.

II. BACKGROUND

A. Reinforcement Learning Approaches

The approaches for finding the optimal policy π∗ in Eq. 1
may be separated into three families of methods: value-based
methods, policy-based methods, and model-based methods.
Value-based methods, e.g. Q-Learning, are closer to RL’s
historical roots in dynamic programming. They use the learned
value of states and actions to find a policy which will transfer
the agent into states with more value. Policy-based methods
directly learn to optimize an action-making policy via maxi-
mizing a reward function. Model-based approaches require the
agent have a representation of the environment which provides
a prediction of the reward the environment will yield when a
given action is taken. This model of the environment enables
learning the optimal policy by providing a prediction of how
the environment will behave so the best actions to take may
be identified. As illustrated in Fig. 2, the three families of RL
methods may be combined in order to benefit from the strength
of each. Because they serve as the basis for deep RL, we are
focusing upon policy-based methods, highlighted in gray in
the figure, and described in more detail next.

“Vanilla” Policy Gradient (VPG) is a basic RL method
which directly optimizes a policy function πθ, which is repre-
sented by a DNN, parameterized by θ [29]. At each step in a
Markov Decision Process, the current state observation is input
to πθ, which returns output probabilities for each possible
action; the agent then samples an action from this probability
distribution. Because πθ is a differentiable function, Gradient
Ascent may be used to discover local optima. As in all GA
applications, an objective function is defined. In the case of
GA, the objective is equal to the expected sum of rewards
over a state-action sequence, and GA seeks to maximize this
expectation by finding an optimal θ:

θ∗ = argmax
θ

Eτ∼πθ(τ)
[∑

t

r(st, at)

]
, (2)

where πθ(τ) is the distribution of state-action pairs condi-
tioned on θ. Note that rewards are typically collected by

TABLE I: Cost of Operations
Operation Energy (pJ) Area (um)
8b Add 0.03 36
16b Add 0.05 67
32b Add 0.1 137
16b FP Add 0.4 1360
32 FP Add 0.9 4184
8b Mult 0.2 282
32b Mult 3.1 3495
16b FP Mult 1.1 1640
32b FP Mult 3.7 7700
32b SRAM Read (8KB) 5 N/A
32b DRAM Read 640 N/A

Energy and die area costs for various operations. Quantized
operators and operands are preferred for low-power and/or
low-resource applications [28].

sampling the environment with an agent using an older version
of the policy, and that the policy is updated after each step of
GA. Depending on the complexity of the task, the iterative
process of sampling the environment, followed by GA, can
take anywhere from minutes to months.

Finally, after an optimal set of parameters is found, the
trained policy may be used for controlling an agent in the real-
world. When applying deep RL under extreme performance
constraints, the number and quantization of operations required
for each DNN inference becomes a critical factor.

B. Mathematical Optimizations for Deep Learning

Modern DNN architectures require billions of floating-point
multiplications and additions (MAC) for classification of a
single image. Without careful design, this results in high power
consumption. Gas powered vehicles, for example, can support
high energy demands, but efficient, battery operated systems
cannot. Additionally, modern DNNs have high latency, but low
latency is required for many real-time applications. To address
these challenges, a variety of numerical optimizations may be
applied to DNNs.

As a motivating example, consider the DNN architecture
AlexNet, which changed the machine learning landscape when
it became the first DNN to dominate the ImageNet competition
[13]. AlexNet requires over 724M MAC operations, using 61M
32-bit parameters, per image classification [27]. Table I gives
die area and power requirements for various operations; these
costs are the driving factors behind hardware and algorithmic
DNN optimization efforts. At 3.7pJ per 32-bit floating-point
(FP) multiplication and .9pJ per 32-bit FP addition, AlexNet
costs at least 3.3mJ per inference. However, consider the
results if adequate performance could be achieved using 8-
bit fixed-point arithmetic: .17mJ per inference; this is a 19×
reduction in power compared to 32-bit FP. Energy cost for
accessing system memory is also high, with a cost of 640pJ for
a single 32-bit DRAM read operation, therefore it is desirable
to reduce the size of parameters such that DRAM access is
minimized.

DNN mathematical optimizations are grouped by three
primary strategies: pruning [15], compression [8], and quan-

2018 International Joint Conference on Neural Networks (IJCNN)

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on May 19,2021 at 20:12:52 UTC from IEEE Xplore. Restrictions apply.

tization [5]. Pruning reduces the number of neurons or the
number of parameters, which, in turn, reduces the total number
of MAC operations, memory storage, and traffic. Compression
forces parameters to share values, thus decreasing memory
storage and traffic. And quantization reduces the precision of
inputs, parameters, or activations, which reduces both memory
requirements and silicon required for processing elements.
Some optimizations reduce power and some optimizations
reduce both power and latency. It is possible to optimize a
DNN and maintain classification accuracy, but there also exist
extreme optimization methods which result in unavoidable ac-
curacy loss. Depending on the application, decreased accuracy
may be worth the reduction in power and latency.

Since 2015, the machine learning community has developed
many pruning, quantization, and compression techniques to
reduce the underlying math and data required by DNNs: [5–
7, 9–12, 14, 16, 20, 21]. However, as of yet, there has been
no effort toward extending these ideas to deep RL. It is
necessary to investigate the exact manner in which existing
DNN optimization methods impact RL performance.

III. APPROACH

In this work we study the effects of adapting representative
pruning, quantization, and compression methods to “Vanilla”
Policy Gradient (VPG). This section introduces the algorithms
in the context of RL. The following section covers the results
of their application to VPG.

A. Quantization

In 2015, BinaryConnect (BC) [5] was an early DNN
quantization method, and exemplifies the field’s approach to
quantization. During forward-propagation, BC quantizes full-
precision DNN parameters to {−1, 1}, using the sign function:

θb =

{
+1 if θ ≥ 0,

−1 else.
(3)

Eq. 3 discards real-valued information, but, in doing so,
it also eliminates the need for floating-point MACs during
forward-propagation. Instead, signed floating-point addition
may be used for neuron activation input calculations. During
back-propagation, the error caused by quantization is used to
update the real-valued θs. From a hardware perspective, when
configured for AlexNet, memory overhead is 32× less when
using BC-derived parameters. However, there is a performance
loss when using quantization; with the AlexNet topology,
BinaryConnect achieves 61% top-5 accuracy on ImageNet,
compared to 80.2% accuracy when using the same DNN
topology and 32-bit full-precision accuracy [22].

Applied to RL, BinaryConnect may be used with Vanilla
Policy Gradient. VPG minimizes the cost1:

C = − 1

T

T∑
t=1

logπθ(at|st)Ât (4)

1Minimizing cost and maximizing reward are equivalent, if cost equals the
negative of reward.

where Ât is the advantage at time t. Optimal calculation of
Ât is a focus of RL research, but VPG sets At equal to the
expected sum of trajectory rewards. The cost function in Eq.
4 can be combined with the BinaryConnect optimization to
create the BinaryConnect+VPG method as given in Algorithm
1.

Algorithm 1 BinaryConnect+VPG

Require: A state observation, selected action, advantage, pre-
vious parameters θt−1 (parameters) and bt−1 (biases), and
learning rate η.

Ensure: Updated {−1, 1}-valued parameters θt and real-
valued bias bt.
1. Forward propagation:
θb ← binarize(θt−1)
For k = 1 to L− 1, compute activation ak, knowing ak−1,
θb and bt−1

Compute output probability of selected action using softmax
2. Backward propagation:
Initialize output layer’s activations gradient ∂C

∂aL

For k = L to 2, compute ∂C
∂ak−1

knowing ∂C
∂ak

and θb
3. Parameter update:
Compute ∂C

∂θb
and ∂C

∂bt−1
knowing ∂C

∂ak
and ak−1

θt → clip(θt−1 − η ∂C∂θb)
bt → bt−1 − η ∂C

∂bt−1

In addition to BinaryConnect, we consider BinaryNet [10],
which operates similarly, with the addition that activations are
also binarized. When using BinaryNet, the activation inputs
are summed, as with BinaryConnect, and then the resulting
sum is converted to [−1, 1] using the sign function. This opti-
mization eliminates all full-precision calculations and replaces
them with signed integer calculations. As with BinaryCon-
nect, BinaryNet requires full-precision gradient updates during
training. As an example of the impact BinaryNet quantization
has on performance, it achieves 50.42% top-5 accuracy on
AlexNet [22]. BinaryNet may also be combined with VPG.

B. Compression

Modern DNN architectures require over 500MB of model
parameters to be transferred from memory to the processing el-
ements [27]. Compression methods reduce the amount of data
to be transferred from system memory to processing elements,
thereby reducing the most expensive power operation.

Here we consider a compression method introduced by Han,
et al., which clusters parameters in each layer [8]. First, a
full-precision version of the network is trained using VPG.
Then the n b-bit parameters of each layer are clustered into k
groups using an arbitrary clustering algorithm, e.g. K-Means.
Finally, the network is fine-tuned. During the fine-tuning stage,
in forward-propagation, each cluster is locked to the same
value. During back-propagation, the individual gradients for
each cluster are summed by their respective group. The sum
of the gradients are then applied to the appropriate cluster
parameters.

2018 International Joint Conference on Neural Networks (IJCNN)

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on May 19,2021 at 20:12:52 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Compression+VPG

Require: Full-precision policy network parameterized by θall,
learning rate η, and number of clusters k.

Ensure: Fine-tuned network incorporating real-valued clus-
tered parameters θk for each layer.
1. Full-precision training:
For each state observation perform full-precision (FP32)
network evaluation. Select actions from resulting output
distributions.
At episode end, update all FP32 parameters θall using
standard VPG and η. Repeat until maximum performance
is achieved.
2. Compression:
For each layer, cluster parameters into k groups using K-
Means algorithm, resulting in θk.
3. Fine-tuning:
For each state observation perform network evaluation using
θk. Select actions from resulting output distribution.
Calculate gradient as usual.
Perform modified backpropagation: in each layer, sum par-
tial derivatives associated with respective cluster.
Update θk using summed partial derivatives and η. Repeat
Step 3 until maximum performance is achieved.

After training, when evaluating each layer, only the cluster
indices must be transmitted, resulting in a compression rate
of:

r =
nb

nlog2(k) + kb
. (5)

Complete steps for combining VPG with compression are
provided in Algorithm 2.

C. Pruning

Pruning is the process of eliminating neurons or parameters.
This is the oldest optimization considered by our study and
dates back to LeCun, et al., 1989 [15]. In this work, we prune
parameters with “small” absolute values, after the policy has
been trained. The method is similar to that presented in the
previous section, where, initially, the full-precision network
is trained. Then parameters with an absolute value less than
the pth percentile are set permanently to zero. Finally, the
network is fine-tuned to compensate for the missing data. In
[8], pruning resulted in a 9×–13× reduction in network size,
while still maintaining high accuracy. See Algorithm 3 for
more details.

IV. RESULTS

To explore the impacts of mathematical optimizations on
reinforcement learning policy performance, we have imple-
mented the representative optimizations described in Sec-
tion III in Python using the PyTorch environment [2]. To
explore the impact of the optimizations across a variety of
domains, we have used the popular benchmark suite OpenAI

Algorithm 3 Pruning+VPG

Require: Full-precision policy network parameterized by θall,
learning rate η, and pruning threshold parameter p.

Ensure: Fine-tuned network incorporating real-valued pruned
parameters θp for each layer.
1. Full-precision training:
For each state observation perform full-precision (FP32)
network evaluation. Select actions from resulting output
distribution.
Update all FP32 parameters θall using standard VPG and η.
Repeat until maximum FP32 performance is achieved.
2. Pruning:
For each layer, eliminate parameters less than the layer’s pth

percentile, resulting in θp.
3. Fine-tuning:
For each state observation perform network evaluation using
θp. Select actions from resulting output distributions.
Use VPG to update θp. Repeat Step 3 until maximum
performance is achieved.

Gym [1, 4]. In particular, we have used the optimization meth-
ods on three discrete action-space environments: CartPole-
v0, Acrobot-v1, and Atari Pong. We compare the optimized
results to full-precision VPG (FP+VPG). While the CartPole-
v0 and Acrobot-v1 are deterministic control problems, it has
been shown that if an RL algorithm performs successfully on
those, it is a good indication that it will perform well on a
more difficult problem. This heuristic holds true, for example,
when using the Compression+VPG optimization method, as
discussed below.

The CartPole-v0 benchmark is a finite-horizon, simulated
physics control challenge in which a pole is attached to an
un-actuated joint and balanced vertically upon a cart. The cart
moves laterally along a track, and the goal is to apply force
to the cart to keep the pole balanced. The agent is provided
with state observations consisting of: cart position, angle of
the pole, cart velocity, and rate of change of the angle. In
OpenAI Gym, the agent may apply a force of +1 or -1 to
the cart at each time step, and a reward of +1 is returned at
each step that the cart is balanced. The environment returns
the “done” signal when the pole moves more than 15 degrees
from vertical, or the cart moves more than 2.4 units from the
starting position, or if the pole is kept balanced for more than
200 time steps. The environment is considered “solved” when
the agent collects an average reward of 195 over 100 episodes.

Acrobot-v1 is a two-link pendulum finite-horizon environ-
ment where only the joint between links is actuated. Initially
the arm is pointed down, and it must be swung up and
balanced. The agent’s task is to apply joint torques such that
the lower link is swung up and kept balanced. The state
observations include sine and cosine of the joint angles, as
well as joint velocities. In OpenAI Gym the torques may be
+1, 0, or -1. The environment returns -1 reward at each step
and ends in failure after 500 steps or in success if the distant

2018 International Joint Conference on Neural Networks (IJCNN)

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on May 19,2021 at 20:12:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: (top) BinaryConnect+VPG (BC) performed poorly on
the Acrobot-v1 task, compared to full-precision VPG (FP).
When using 16 units in the hidden layer (the smallest version
of BC) some learning takes place. (bottom) BC with 16 and
32 hidden units performs favorably compared to FP with 128
hidden units.

link is elevated beyond a threshold before 500 steps.
The OpenAI Gym Atari environment is a wrapper for the

Arcade Learning Environment and includes over 50 games. We
learned agents for the classic Pong game, in which it competes
against Pong’s original AI agent. The state observation is game
pixels, and the available actions are move up, move down,
and no move. In OpenAI Gym, the environment terminates
the game after either player reaches 21 points.

A single hidden layer neural network was selected as the
base topology for all experiments. The input layer and output
layer sizes varied depending on the state and action-spaces of
the environment being solved. We varied the number of units
in the hidden layer from 256 down to 16 for the CartPole-v0
and Acrobot-v1 tasks. For the Pong-v0 task we used 256 and
128 units in the hidden layer. In the given plots, performance
is reported as the mean of ten separately trained policies.
Standard deviation of each policy is also plotted.

Agent policies were initialized from the neural net-
work topology described above, after which pruning (Prun-

Fig. 4: (top) BinaryNet+VPG (BN) shows erratic behavior
on CartPole-V0, but the 16 hidden unit version achieves
continuous stretch of high returns around episodes 500–3,000,
surpassing FP+VPG (FP). (bottom) BinaryNet+VPG with 16
and 32 hidden units appear to be competitive to FP+VPG
results. Initial performance indicates incompatibility with the
simple update method used by VPG could be the cause of
eventual performance degradation.

ing+VPG), quantization (BinaryConnect+VPG and Bina-
ryNet+VPG), and compression (Compression+VPG) methods
were applied as described in the algorithms above. In addition
to the mathematically optimized methods, a full-precision
policy (FP+VPG) was trained on each problem to provide
a baseline. Agents were tasked with learning each of the
previously listed environments. As can be observed in the
broader RL literature, no single agent dominated all tasks.
In our study we see that BinaryNet+VPG and BinaryCon-
nect+VPG demonstrate erratic behavior on each task, with
times of high and low performance, and overall they do not
perform well. Pruning+VPG and Compression+VPG showed
excellent performance on the control tasks. Compression+VPG
dominated at the Pong task and seems to be the most generally
useful of the methods considered here.

2018 International Joint Conference on Neural Networks (IJCNN)

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on May 19,2021 at 20:12:52 UTC from IEEE Xplore. Restrictions apply.

A. Impact of Quantization

BinaryConnect+VPG performed poorly on CartPole-v0, but
it performed well on Acrobot-v1, as shown in Fig. 3. However,
it can be observed in Fig. 3 (bottom) that BinaryConnect+VPG
with 16 hidden units dominates all other variations. This may
indicate that the other policies have too many parameters for
this simple task. Less convincingly, as seen in Fig. 3 (top),
BinaryConnect+VPG shows random spikes of marginal perfor-
mance on Acrobot-v1, and it never competes with FP+VPG.
On the Acrobot-v1 task, the BinaryConnect+VPG models may
not have the necessary capacity to perform consistently.

In Fig. 4, it is shown that BinaryNet+VPG is a more
interesting policy, with times of peak performance on both
CartPole-v0 and Acrobot-v1. Its performance in Acrobot-
v1 is particularly interesting and shows similar behavior to
BinaryConnect+VPG, with a period of stability followed by
increasing instability. Perhaps a different update strategy could
prevent the instabilities.

B. Impact of Compression

Compression+VPG performed the most robustly among the
mathematical optimization methods discussed in this paper.
The results for Acrobot-v1, CartPole-v0, and Pong are given
in Fig. 5. As described in Algorithm 2, Compression+VPG
uses a policy function which has an identical topology to the
full-precision version for the first half of the episodes. After the
halfway point, Step 2 of Algorithm 2 is used to compress the
parameters. For our experiments, k was set to 8, which limits
all parameters in each layer to 8 possible 32-bit floating-point
values.

During the first half of all three figures, Compression+VPG
performs the same as the baseline full-precision network, as
it should, because during that time it is also a full-precision
network. However, after compression takes place, we see a
startling reduction in variance in one case and as well as
improved returns in all cases.

C. Impact of Pruning

Pruning+VPG also exhibited excellent performance on
CartPole-v0, with results shown in Fig 6. As with Compres-
sion+VPG, a full-precision policy is trained during the first
half of each experiment, then, as described in Algorithm 3,
the lower pth percentile of network parameters are eliminated.
In Fig. 6, it is very promising that Pruning+VPG fully recovers
after 50% of its parameters have been removed.

V. CONCLUSIONS & FUTURE WORK

To alleviate the immense computational requirements of
deep neural networks it is desirable to employ optimized
versions with comparable performance by taking advantage
of mathematical simplifications. A suite of such mathematical
optimizations has been pursued for deep neural networks
and applied to domains such as image processing. Such
optimization include binarization of parameters and inputs,
clustering of parameters, and pruning parameters. However,
it was previously unknown whether the existing optimization

Fig. 5: (top) Compression+VPG (Comp) performs better than
FP+VPG (FP) on CartPole-v0. Compression occurs at dotted
line, after which performance of Compression+VPG increases.
(middle) Compression+VPG performs better than FP+VPG on
Acrobot-v1. Note that unlike the top and bottom plots, there
is no discernible change in performance after compression for
the Acrobot-v1 task. (bottom) Compression+VPG applied to
Pong-v0 environment shows stronger results than FP+VPG
after tuning.

techniques can be readily applied to deep RL as well, without
impacting the performance of the learned policy.

2018 International Joint Conference on Neural Networks (IJCNN)

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on May 19,2021 at 20:12:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Surprisingly, Pruning+VPG achieves equal perfor-
mance to FP+VPG on all tasks. Policy networks are pruned
at the midpoint of each plot.

In this work, we have shown initial results indicating
the strong performance that may still be achieved by deep
RL, even under extreme optimization. In fact, the Com-
pression+VPG method, which locked all parameters in each
layer to 8 shared values, surpassed full-precision VPG on
each environment (Fig. 5). And Pruning+VPG performed
equally to VPG after fine-tuning (Fig. 6). However, Bina-
ryConnect+VPG and BinaryNet+VPG show promising, but

very unstable behavior, which is most likely a result of the
extreme quantization used for those methods. As is the case for
reinforcement learning algorithms in general, we also observed
that different optimizations are better suited than others for
different problem domains. Furthermore it is still an open
problem in RL to determine exactly how much model capacity
is required for a particular task a priori.

VPG is a good baseline algorithm for optimized RL. It
allows for experimentation with optimization methods, with-
out confounding factors which would be included by more
advanced policy-gradient based algorithms. However, VPG is
notorious for exhibiting high variance, and therefore erratic
collection of rewards, between policy updates. More advanced
methods ensure lower variance and are also faster to train. As
future work, we will explore the interactions between more
sophisticated RL algorithms combined with a broader array
of mathematical optimizations.

Additionally, further experiments are needed to understand
the trade-offs associated with applying various optimizations
to different problem domains such as continuous versus
discrete action-space tasks. The neural network architecture
itself is also critically important and directly affects the
impact various optimizations may have. For example, an over-
paramaterized neural network with more latent capacity than a
given problem minimally needs will respond differently to the
application of different optimization techniques than a minimal
network for which optimizations may have a stronger impact.
And, beyond assessing performance, more sophisticated im-
plementation metrics can be analyzed such as: the number of
multiplications and additions per policy action, size of policy
parameters, and estimated power consumption.

In conclusion, the AI/ML communities have made great
strides in the development of accurate and robust DNNs.
The RL community is now incorporating such DNNs to an
increasing degree and is showing results across a broad range
of domains. Just as the architecture community has shown
interest in DNN accelerator design, there will be increasing
efforts toward deep RL accelerator design. However, because
of the added complexity of RL, it is important to first under-
stand the limitations of mathematical optimization for deep
RL, before moving to the design of deep RL accelerators. This
work shows that such a transition will be possible but future
studies are required. The outcome of these studies will serve
as a foundation for making architectural decisions for building
RL accelerators and related neuromorphic processors.

ACKNOWLEDGMENT

Sandia National Laboratories is a multi-mission laboratory
managed and operated by National Technology and Engineer-
ing Solutions of Sandia, LLC., a wholly owned subsidiary
of Honeywell International, Inc., for the U.S. Department
of Energy’s National Nuclear Security Administration under
contract DE-NA0003525.

2018 International Joint Conference on Neural Networks (IJCNN)

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on May 19,2021 at 20:12:52 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Openai gym: A toolkit for developing and comparing
reinforcement learning algorithms, 2018.

[2] Pytorch: Tensors and dynamic neural networks in python
with strong gpu acceleration, 2018.

[3] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey,
M. Kalakrishnan, L. Downs, J. Ibarz, P. Pastor, K. Kono-
lige, S. Levine, and V. Vanhoucke. Using Simulation
and Domain Adaptation to Improve Efficiency of Deep
Robotic Grasping. arXiv:1709.07857 [cs], Sept. 2017.
arXiv: 1709.07857.

[4] G. Brockman, V. Cheung, L. Pettersson, J. Schneider,
J. Schulman, J. Tang, and W. Zaremba. OpenAI Gym.
arXiv:1606.01540 [cs], June 2016. arXiv: 1606.01540.

[5] M. Courbariaux, Y. Bengio, and J.-P. David. Bina-
ryConnect: Training Deep Neural Networks with Binary
Weights During Propagations. NIPS, 2015.

[6] X. Glorot, A. Bordes, and Y. Bengio. Deep Sparse
Rectifier Neural Networks. PMLR, pages 315–323, June
2011.

[7] S. Gupta, A. Agrawal, K. Gopalakrishnan, and
P. Narayanan. Deep Learning with Limited Numerical
Precision. ICML, pages 1737–1746, 2015.

[8] S. Han, H. Mao, and W. J. Dally. Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding. 2016.

[9] S. Han, J. Pool, J. Tran, and W. J. Dally. Learning Both
Weights and Connections for Efficient Neural Networks.
NIPS, pages 1135–1143, 2015.

[10] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and
Y. Bengio. Binarized Neural Networks. NIPS, pages
4107–4115, 2016.

[11] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and
Y. Bengio. Quantized Neural Networks: Training Neural
Networks with Low Precision Weights and Activations.
arXiv:1609.07061 [cs], Sept. 2016. arXiv: 1609.07061.

[12] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf,
W. J. Dally, and K. Keutzer. SqueezeNet: AlexNet-
level accuracy with 50x fewer parameters and <0.5mb
model size. arXiv:1602.07360 [cs], Feb. 2016. arXiv:
1602.07360.

[13] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han,
W. J. Dally, and K. Keutzer. Squeezenet: Alexnet-level
accuracy with 50x fewer parameters and <1mb model
size. CoRR, abs/1602.07360, 2016.

[14] M. Kim and P. Smaragdis. Bitwise Neural Networks.
arXiv:1601.06071 [cs], Jan. 2016. arXiv: 1601.06071.

[15] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain
damage. NIPS, pages 598–605, 1990.

[16] F. Li, B. Zhang, and B. Liu. Ternary Weight Networks.
arXiv:1605.04711 [cs], May 2016. arXiv: 1605.04711.

[17] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra. Continuous control
with deep reinforcement learning. arXiv:1509.02971 [cs,
stat], Sept. 2015. arXiv: 1509.02971.

[18] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lilli-
crap, T. Harley, D. Silver, and K. Kavukcuoglu. Asyn-
chronous Methods for Deep Reinforcement Learning.
arXiv:1602.01783 [cs], Feb. 2016. arXiv: 1602.01783.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Ve-
ness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K.
Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra,
S. Legg, and D. Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–
533, Feb. 2015.

[20] J. Ott, Z. Lin, Y. Zhang, S.-C. Liu, and Y. Bengio.
Recurrent Neural Networks With Limited Numerical
Precision. arXiv:1608.06902 [cs], Aug. 2016. arXiv:
1608.06902.

[21] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi.
XNOR-Net: ImageNet Classification Using Binary Con-
volutional Neural Networks. arXiv:1603.05279 [cs],
Mar. 2016. arXiv: 1603.05279.

[22] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi.
Xnor-net: Imagenet classification using binary convo-
lutional neural networks. In European Conference on
Computer Vision, pages 525–542. Springer, 2016.

[23] J. Schulman, S. Levine, P. Moritz, M. I. Jordan,
and P. Abbeel. Trust Region Policy Optimization.
arXiv:1502.05477 [cs], Feb. 2015. arXiv: 1502.05477.

[24] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov. Proximal Policy Optimization Algorithms.
arXiv:1707.06347 [cs], July 2017. arXiv: 1707.06347.

[25] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou,
A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai,
A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre,
G. van den Driessche, T. Graepel, and D. Hassabis.
Mastering the game of Go without human knowledge.
Nature, 550(7676):354–359, Oct. 2017.

[26] R. S. Sutton and A. G. Barto. Reinforcement learning:
An introduction, volume 1. MIT press Cambridge, 1998.

[27] V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer. Efficient
Processing of Deep Neural Networks: A Tutorial and
Survey. arXiv:1703.09039 [cs], Mar. 2017. arXiv:
1703.09039.

[28] D. William. High-Performance Hardware for Machine
Learning. NIPS, 2015.

[29] R. J. Williams. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. In
Reinforcement Learning, pages 5–32. Springer, 1992.

2018 International Joint Conference on Neural Networks (IJCNN)

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on May 19,2021 at 20:12:52 UTC from IEEE Xplore. Restrictions apply.

