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Abstract. In this paper we introduce a new transformation method
and a multiplication algorithm for multiplying the elements of the field
GF(2k) expressed in a normal basis. The number of XOR gates for the
proposed multiplication algorithm is fewer than that of the optimal nor-
mal basis multiplication, not taking into account the cost of forward and
backward transformations. The algorithm is more suitable for applica-
tions in which tens or hundreds of field multiplications are performed
before needing to transform the results back.

1 Introduction

Arithmetic operations in finite fields GF(q) have several applications in cryp-
tography, coding, and computer algebra. Particularly of interest are fields of
characteristic 2, where q = 2k, which have various uses in elliptic curve cryp-
tography for large values of k, usually in the range from 160 to 521. Further-
more, smaller fields, for example, k = 8 (AES/Rijndael) and k = 2, . . . , 32
(Reed-Solomon and BCH codes) are also commonly used. Elliptic curve crypto-
graphic protocols generally require fast hardware and software implementations
of the multiplication and inversion operations. On the other hand circuits for
these operations for small fields may be implemented completely in hardware
and/or using a table lookup approach.

The subject of this paper is multiplication algorithms in the binary exten-
sion fields GF(2k). There are essentially two categories of algorithms, based on
the representation of field elements using polynomial basis or normal basis. In
this paper, a new transformation method and a new multiplication algorithm for
normal basis is introduced. First we will review the existing algorithms for both
polynomial and normal bases, and then introduce the transformation method,
which maps the elements of the field uniquely to the same set. This also slightly
changes the definition of multiplication, as the product is computed in the trans-
formed domain. The resulting algorithm is useful for applications where several
normal basis multiplications are performed, as is the case for elliptic curve cryp-
tography.
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2 Polynomial Basis Multiplication

In the polynomial basis a field element a ∈ GF(2k) is represented as a polynomial
of degree less than or equal to k−1, written as a(x) =

∑k−1
i=0 aix

i with coefficients
ai ∈ {0, 1}. The addition of two field elements a and b is accomplished by adding
the coefficients ai and bi in GF(2), which is the XOR of two binary values. On
the other hand, the multiplication c = a·b is accomplished by first computing the
degree 2k − 2 product polynomial c′(x) = a(x)b(x) and then reducing it modulo
the irreducible polynomial p(x) of degree k, in order to obtain the product c(x)
of degree at most k − 1:

c(x) = a(x)b(x) mod p(x) .

The multiplication of the individual coefficients ai and bi require 2-input AND
gates, while the steps of the multiplication is accomplished by shift and XOR
operations in software, or rewiring and XOR gates in hardware.

There are various polynomial basis multiplication algorithms; the work of
Mastrovito is quite remarkable [15,16]. This was followed up in [9,20,26,28].

The properties of the irreducible polynomial p(x) are also important, and
not to be overlooked. In general, low Hamming weight irreducible polynomials
[24], for example, trinomials and pentanomials are preferred. These yield many
efficient algorithms [10,12,27]. A comprehensive list of polynomial basis multi-
plication algorithms can be found in [5].

A polynomial basis multiplication algorithm of interest is the Montgomery
multiplication algorithm, proposed by Koç and Acar in [13]. This algorithm has
three important properties that do not exist in the common algorithms found in
the literature. The first property is that it works for general irreducible polyno-
mials, not just special ones (such as trinomials, pentanomials, or all-one polyno-
mials), making it more suitable for software implementations of cryptographic
algorithms. The second property is that, it actually computes

c̄(x) = MonPro(ā(x), b̄(x)) = ā(x)b̄(x)x−k mod p(x) , (1)

instead of the usual c(x) = a(x)b(x) mod p(x). This algorithm is actually the
polynomial analogue of the Montgomery multiplication algorithm for integers
[14,17]. In order to compute a field multiplication, the elements a and b are first
forward transformed into the polynomial Montgomery domain

a → ā : ā(x) = a(x)xk mod p(x)
b → b̄ : b̄(x) = b(x)xk mod p(x)

and then, the Montgomery product is computed

c̄(x) = ā(x)b̄(x)x−k mod p(x)
= a(x)xkb(x)xkx−k mod p(x)
= a(x)b(x)xk mod p(x) ,
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which is equal to c(x)xk. When the result c̄ needs to be transformed back to c,
we use

c̄ → c : c(x) = c̄(x)x−k mod p(x) .

Of course, in order to be useful, one should not be needing too many forward
c → c̄ and backward c̄ → c transformations. This is never a problem for applica-
tions we are considering, such as elliptic curve cryptography, where tens of field
multiplications are performed for each elliptic curve point addition and doubling
operations, and hundreds of field multiplications are performed for elliptic curve
point multiplication operations.

Finally, the third property of the Montgomery multiplication algorithm is
that it is more suitable for software implementations for general irreducible poly-
nomials, because the reduction proceeds word-by-word, due to the properties of
the Montgomery multiplication for integers [14,17]. However, it can be argued
that this is a moot point, since in most cases, we have low Hamming weight irre-
ducible polynomials (trinomials and pentanomials) and there is no particular
need for general irreducible polynomials [4].

Before closing this section we should also add that the Montgomery multipli-
cation in GF(2k) is not the only transformative multiplication algorithm; there
are also spectral methods [22,23], embedding techniques [25], and transformation
of the normal basis elements into polynomials [8].

3 Normal Basis Multiplication

An element β of the field GF(2k) is called a normal element, if all 2k elements
of the field can be uniquely written as a linear sum of the powers of two powers
of β as

a =
k−1∑

i=0

aiβ
2i = a0β + a1β

2 + a2β
4 + · · · + ak−1β

2k−1
,

such that ai ∈ {0, 1}. Since the work of Kurt Wilhelm Sebastian Hensel in 1888,
we know that there always exists a normal element for any prime p and integer
k for the field GF(pk).

For the brevity of the notation, we will interchangeably use βi = β2i , and
furthermore, use 1 to represent the unity element in normal basis:

1 = β + β2 + β4 + · · · + β2k−1
= β0 + β1 + β2 + · · · + βk−1.

The normal representation of an element in GF(2k) is particularly useful for
squaring it. Notice that, since

βk = β2k = β = β0

β2
i = β2iβ2i = β2i+1

= βi+1 ,
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given a = (ak−1ak−2 · · · a1a0), we obtain a2 as

a2 = (a0β0 + a1β1 + a2β2 + · · · + ak−1βk−1)2

= a0β
2
0 + a1β

2
1 + a2β

2
2 + · · · + ak−1β

2
k−1

= a0β1 + a1β2 + a2β3 + · · · + ak−1βk

= ak−1β0 + a0β1 + a1β2 + a2β3 + · · · + ak−2βk−1

= (ak−2ak−3 · · · a1a0ak−1) ,

Therefore, the normal expression of a2 is obtained by left-rotating the digits of
the normal expression of a. The ease of squaring in normal basis is remarkable,
but the multiplication is more complicated.

In the following we explain the steps of the normal basis multiplication,
which will be used to develop a new transformation method and normal basis
multiplication algorithm.

In order to describe the computational requirements of the normal basis mul-
tiplication, we follow the steps of the Massey-Omura algorithm [19,21], which
gives the general outline for normal basis multiplication. Given the input
operands a and b, the Massey-Omura multiplier first generates all partial prod-
ucts aibj for 0 ≤ i, j ≤ k − 1 using AND gates, and then sums these partial
product terms using multi-operand adders (whose unit element is an XOR gate).

There are k2 partial product terms aibj , a computation that can be per-
formed using k2 2-input AND gates in a single AND gate delay. Decidedly this
computation is optimal; k2 is both upper and lower bound on the number of
partial product terms, because all of them need to be computed.

However, in the computation of each of the product terms cr for 0 ≤ r ≤ k−1,
we need only a subset of the k2 partial product terms aibj . According to the
optimality argument [18] of the normal basis multiplication, the number of aibj

terms needed to compute any of cr is at least 2k − 1 for GF(2k). If there exists
a normal basis for which the number of aibj terms for computing any of cr is
exactly 2k − 1 for GF(2k), then this normal basis is called optimal. It should
be noted that optimal normal bases do not exist for every value of k in GF(2k),
which is easily verified for small values of k using exhaustive search. All values of
k ≤ 2000 for which there is an optimal normal basis of GF(2k) are listed in [6].

Several constructions of optimal normal bases are given in [18], together with
a conjecture that describes all finite binary field extensions which have an optimal
normal basis. It was proven by Gao and Lenstra in [6,7] that the optimal normal
basis constructions given in [18] are indeed all there is. These constructions are
summarized in the theorem below:

Theorem 1. An optimal normal basis for GF(2k) exist only in either of the
following cases:

1. If k + 1 is prime and 2 is a primitive element in Zk+1, then each of the k
nonunit (k + 1)th root of unity forms an optimal normal basis in GF(2k).

2. If 2k + 1 is prime and
2a: Either, 2 is primitive in Z2k+1;
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2b: Or, 2k + 1 = 3 (mod 4) and 2 generates quadratic residues in Z2k+1;
then, β = γ + γ−1 generates an optimal normal basis in GF(2k), where γ is
a primitive (2k + 1)th root of unity.

For historical reasons, the optimal normal bases that satisfy the first part of
the above theorem are named Type 1, while the ones that follow from the second
part are named Type 2 bases.

3.1 Optimal Normal Multiplication in GF(22)

The elements of GF(22) expressed in polynomial basis are {0, 1, x, x+1}. There is
only one irreducible polynomial of degree 2 over GF(2), which is p(x) = x2+x+1.
Since k + 1 = 3 is prime, and 2 is a primitive element in Z3 (because 21 = 2
and 22 = 1), the field GF(22) has Type 1 optimal normal basis. The 2 nonunit
3rd roots of the unity in GF(22) are the two optimal normal basis elements of
GF(22), and they are x and x + 1, because x3 = (x + 1)3 = 1 mod p(x).

We illustrate the normal basis multiplication in GF(22) using the optimal
normal element β = x. Let the normal representations of two operands given as
a = a0β + a1β

2 and b = b0β + b1β
2. The product c is equal to

c = a0b0β
2 + a0b1β

3 + a1b0β
3 + a1b1β

4.

This expansion contains the terms β2, β3 and β4. First we need to obtain the
normal representation of β3. Since β = x, we have β2 = x2 = x+1 mod p(x), and
thus, β3 = x(x + 1) = x2 + x = 1 mod p(x). Furthermore, β + β2 = x + x + 1 =
1 mod p(x), and thus, we have

β0 = β + β2 = 1,

β1 = β = x,

β2 = β2 = x + 1,

β3 = β + β2 = 1.

Substituting β3 and β4 with β + β2 and β in the expansion of the product c, we
obtain

c = a0b0β
2 + a0b1(β + β2) + a1b0(β + β2) + a1b1β

= (a0b1 + a1b0 + a1b1)β + (a0b0 + a0b1 + a1b0)β2 (2)

which gives the individual terms of the product c as

c0 = a0b1 + a1b0 + a1b1

c1 = a0b0 + a0b1 + a1b0 (3)

We now define the k × k matrix λ such that λij = β2i+2j for 0 ≤ i, j ≤ k − 1,
which for k = 2 is given as

λ =
[
β2 β3

β3 β4

]

=
[

β2 β + β2

β + β2 β

]

=
[
0 1
1 1

]

β +
[
1 1
1 0

]

β2 = λ(0)β + λ(1)β2 (4)
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We will explain some properties of λ in the following subsection, however, it
suffices to say that the matrix λ has k(2k − 1) = 6 entries (3 in each column or
3 in each row). Furthermore, when it is expanded into the powers of β, we obtain
the 0-1 matrices λ(0) and λ(1), each of which has 2k − 1 = 3 nonzero entries.

3.2 Optimal Normal Multiplication in GF(23)

We now illustrate the normal basis multiplication in GF(23), which has Type
2 optimal normal basis. We use the optimal normal element β = x + 1, and
irreducible polynomial p(x) = x3 + x + 1. In this section we will also describe
certain properties of the λ matrices that are relevant to our proposed multipli-
cation algorithm. Let a and b given as

a = a0β + a1β
2 + a2β

4 ,

b = b0β + b1β
2 + b2β

4 .

The product c would be

c = a0b0β
2 + a0b1β

3 + a0b2β
5 + a1b0β

3 + a1b1β
4 + a1b2β

6

+a2b0β
5 + a2b1β

6 + a2b2β
8 . (5)

This expansion contains terms β2, β4, and β8. Since β8 = β, these are the powers
of 2 powers of β, required for normal representation in GF(23). However, the
above expansion of c also contains other powers: β3, β5, and β6. All powers of β
can be expressed in polynomial basis, reduced modulo the irreducible polynomial
p(x), generating a conversion table between the powers of β and the elements
of the field represented in polynomial basis. Furthermore, once the polynomial
representations of β, β2 and β4 are obtained, we can also obtain the normal
representations of all elements. Table 1 contains the polynomial, the normal,
and the powers of β representations of the field elements.

Table 1. The normal and the powers of β = x + 1 representations of elements in
GF(23) with irreducible polynomial p(x) = x3 + x + 1.

β4 + β2 + β β0

β β1

β2 β2

β4 + β β3

β4 β4

β4 + β2 β5

β2 + β β6

β4 + β2 + β β7
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Substituting the powers of β in the expansion of the product c in Eq. (5), we
obtain

c = a0b0β
2 + a0b1(β + β4) + a0b2(β

2 + β4) + a1b0(β + β4) + a1b1β
4 + a1b2(β + β2)

+a2b0(β
2 + β4) + a2b1(β + β2) + a2b2β

= (a0b1 + a1b0 + a2b2 + a1b2 + a2b1)β + (a0b0 + a0b2 + a2b0 + a1b2 + a2b1)β
2

+(a0b1 + a1b0 + a0b2 + a2b0 + a1b1)β
4 .

which gives the individual terms of the product c as

c0 = a0b1 + a1b0 + a2b2 + a1b2 + a2b1,

c1 = a0b0 + a0b2 + a2b0 + a1b2 + a2b1, (6)
c1 = a0b1 + a1b0 + a0b2 + a2b0 + a1b1 .

The k × k matrix λ with entries λij = β2i+2j for 0 ≤ i, j ≤ k − 1 is given as

λ =

⎡

⎣
β2 β3 β5

β3 β4 β6

β5 β6 β8

⎤

⎦ =

⎡

⎣
β2 β + β4 β2 + β4

β + β4 β4 β + β2

β2 + β4 β + β2 β

⎤

⎦ . (7)

The λ matrix contains all powers of β needed in the computation of c, as given
in Eq. (5). It can also be expressed by separating the powers of β as

λ =

⎡

⎣
0 1 0
1 0 1
0 1 1

⎤

⎦ β +

⎡

⎣
1 0 1
0 0 1
1 1 0

⎤

⎦ β2 +

⎡

⎣
0 1 1
1 1 0
1 0 0

⎤

⎦ β4 = λ(0)β + λ(1)β2 + λ(2)β4 , (8)

where, the 3 × 3 matrices λ(r) for r = 0, 1, 2 have entries in {0, 1}. Since the
product c in Eq. (5) can be written as

c =
2∑

i=0

2∑

j=0

aibjβ
2i+2j =

2∑

i=0

2∑

j=0

aibjλij

=
2∑

i=0

2∑

j=0

aibjλ
(0)
ij β +

2∑

i=0

2∑

j=0

aibjλ
(1)
ij β2 +

2∑

i=0

2∑

j=0

aibjλ
(2)
ij β4

By expressing c as c = c0β + c1β
2 + c2β

4, we can write the individual terms of
the product cr as

cr =
2∑

i=0

2∑

j=0

aibjλ
(r)
ij .

The complexity of computing the terms cr depends on the number of 1s in the
matrices λ(r) for r = 0, 1, 2. Furthermore, the matrices λ

(r)
ij have the following

properties:

λ
(r)
ij = λ

(r)
ji (9)

λ
(r+1)
i+1,j+1 = λ

(r)
i,j (10)
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The first property is due to the fact that 2i + 2j = 2j + 2i, and thus,

λij = β2i+2j = β2j+2i = λji .

The second property follows from the fact that 2i+1 + 2j+1 = 2(2i + 2j), and
thus

β2i+1+2j+1
= (β2)2

i+2j ,

which implies
λi+1,j+1(β) = λi,j(β2) .

Considering also the fact that β2k = β, we obtain Eq. (10). Note that all index
arithmetic, i.e., increments such as i+1 and j+1 are considered mod 3 in GF(23)
or mod k in GF(2k).

The optimal basis theorem [7,18] teaches that if the normal element β is
optimal, then each one of the matrices λ

(r)
ij for 0 ≤ r ≤ k − 1 has 2k − 1 nonzero

entries, as was the case for both GF(22) in Eq. (4) and GF(23) in Eq. (8), where
we have 2·2−1 = 3 and 2·3−1 = 5 nonzero elements in each matrix. Equivalently,
the matrix λ has k(2k − 1) individual terms such that each term is a power of
2 power of β, as was shown in Eq. (4) for GF(22) and Eq. (7) for GF(23), which
has 15 terms.

3.3 Complexity and Implementation

While there are several different ways of putting things together, the basic outline
of a normal basis multiplier has 2 steps:

– Step 1: Compute aibj terms using k2 2-input AND gates.
– Step 2: Sum the subset of the terms as implied by the nonzero entries of the

λ
(r)
ij matrix using 2k − 2 2-input XOR gates for each cr term.

Step 1 and Step 2 can be performed sequentially, partially parallel, or fully
parallel. Since Step 1 is pretty obvious, that is, it computes k2 different things,
there is no need to dwell on it. Step 2, on the other hand, provides several
different implementations and optimizations. For example, we can implement
a single circuit consisting of 2k − 2 XOR gates (arranged either as a linear
array or a binary tree) to compute c0, and reuse the same circuit for computing
cr for r = 1, 2, . . . , k − 1, by only shifting the input operands ai and bj for
0 ≤ i, j ≤ k − 1. Figure 1 illustrates the construction.

We are intentionally ignoring some of the details of the circuit in Fig. 1, since
there are various ways to arrange the circuit elements, for example, sequential,
parallel, systolic, and pipelined circuits have been designed [1–3]. Our focus
in this paper is not on how the individual steps of the optimal normal basis
multiplications are performed or how individual circuit elements are arranged.
Rather, we are interested in discovering whether there is another way to multiply
two elements expressed in a normal basis defined by β in GF(2k).
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Fig. 1. Optimal normal basis multiplier construction for GF(23).

4 The Proposed Method

Let a and b be expressed in an optimal normal basis, using the normal element
β in GF(2k). The multiplication of a and b produces c, expressed as

c =
k−1∑

i=0

k−1∑

j=0

aibjβ
2i+2j =

k−1∑

i=0

k−1∑

j=0

aibjλij , (11)

such that the k×k matrix λ has k(2k−1) terms of type β2i for i = 1, 2, . . . , k-1.
Let α be a fixed element of GF(2k), such that α �= 0, 1. We will also need
α−1 which can be precomputed using the extended Euclidean algorithm or the
Fermat’s method, or the Itoh-Tsujii method [11], which is actually based on the
Fermat’s method.

We define a new multiplication function, which we denote as NewPro, that
takes two elements ā and b̄ of the field GF(2k), which are the forward transfor-
mations of a and b, as

a → ā : ā = a · α−1 , (12)

b → b̄ : b̄ = b · α−1 . (13)

The transformation requires the precomputed α−1 value. The operands a and
b are now expressed in “bar” domain. The NewPro algorithm takes ā and b̄ as
input and computes c̄ as

c̄ = NewPro(ā, b̄) = ā · b̄ · α . (14)

After the multiplication, the resulting c̄ can be backward transformed to “nobar”
domain using

c̄ → c : c = c̄ · α . (15)
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since
c̄ · α = (ā · b̄ · α) · α = (a · α−1) · (b · α−1) · α2 = a · b .

We call the fixed element α as the NewPro transformation constant. We apply
forward transformation by multiplying with α−1 and backward transformation
by multiplying with α.

This new transformation method reminds us of the Montgomery transforma-
tion, however, no polynomial analogue of the Montgomery multiplication algo-
rithm is implied here. Instead, we will propose a direct method to obtain c̄ from ā
and b̄, that will require fewer XOR gates than the optimal normal basis multipli-
cation. However, this does not mean that the optimal normal basis multiplication
is not optimal. The optimal normal basis multiplication computes c = a ·b, while
our algorithm computes c̄ = ā · b̄ ·α for a judiciously selected (and fixed) element
α ∈ GF(2k).

Furthermore, in order for our algorithm to be useful, one should not be
needing too many forward c → c̄ and backward c̄ → c transformations. Again,
this is not a problem for applications we are considering.

Before proceeding, we should also add that both forward and backward trans-
formations are trivially performed using the NewPro algorithm:

a → ā : NewPro(a, α−2) = a · α−2 · α = ā ,
ā → a : NewPro(ā, 1) = (a · α−1) · 1 · α = a.

(16)

For these computations, we need α−2, which is easily obtained from the normal
representation of α−1 by a left rotation of the digits. We also need the normal
representation of the unity element, which is given as (11 · · · 1) =

∑k−1
i=0 β2i for

any normal element β.
Also, if two elements are expressed in the bar domain, then their additions

produce the output in the bar domain, that is

ā + b̄ = a · α−1 + b · α−1 = (a + b) · α−1 = c · α−1 = c̄ .

Finally we should remark that, similar to (11), the NewPro function for com-
puting c̄ = ā · b̄ · α can be expanded as

c̄ =

⎛

⎝
k−1∑

i=0

k−1∑

j=0

āib̄jλij

⎞

⎠ · α =
k−1∑

i=0

k−1∑

j=0

āib̄j(αλij) .

This is the usual normal basis multiplication, however, the matrix involved is
αλ, instead of just λ, for a fixed element α of the field GF(2k). The matrix λ

has k(2k − 1) terms of type β2i , which determines the number of 2-input XOR
gates as 2k − 2 for computing each component of cr for 0 ≤ r ≤ k − 1.

In order to have a reduced complexity (in terms of the XOR gates) normal
basis multiplication, we need to show that there exists a special element α of
GF(2k) for which αλ has fewer than k(2k − 1) terms of type β2i . We will show
the construction of α and the analyses for the fields GF(22), GF(23), and GF(24)
below, and then describe the general cases.
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4.1 Complexity of NewPro Multiplication in GF(22)

The proposed NewPro algorithm requires the existence of a special element α
of GF(2k) such that the matrix αλ has fewer than k(2k − 1) terms of type β2i.
Since GF(22) has only two suitable elements β and β2, we can easily try each one
to see if the number of terms in the matrix αλ is less than 6. First we consider
α = β:

αλ = βλ = β

[
β2 β + β2

β + β2 β

]

=
[

β3 β2 + β3

β2 + β3 β2

]

=
[
β + β2 β

β β2

]

Indeed the resulting αλ has 5 terms, instead of 6. This gives the αλ(r) matrices as

αλ = βλ =
[
1 1
1 0

]

β +
[
1 0
0 1

]

β2

We obtain the individual components of the product c̄ as

c̄0 = ā0b̄0 + ā0b̄1 + ā1b̄0 ,

c̄0 = ā0b̄0 + ā1b̄0 .

Therefore we showed that the NewPro multiplication c̄ = NewPro(ā, b̄) = āb̄α
requires only 3 2-input XOR gates using the above formulae with the selection
of α = β, instead of 4 2-input XOR gates required by the normal product
computation c = ab, as given by the formulae in Eq. (3).

It turns out that α = β2 also reduces the complexity:

αλ = β2λ = β2

[
β2 β + β2

β + β2 β

]

=
[

β4 β3 + β4

β3 + β4 β3

]

=
[

β β2

β2 β + β2

]

This gives the αλ(r) matrices as

αλ =
[
1 0
0 1

]

β +
[
0 1
1 1

]

β2

We obtain the individual components of the product c̄ as

c̄0 = ā0b̄0 + ā1b̄1 ,

c̄0 = ā0b̄1 + ā1b̄0 + ā1b̄1 .

The NewPro multiplication c̄ = NewPro(ā, b̄) = āb̄α requires only 3 2-input
XOR gates using the above formulae with the selection of α = β2, instead of 4
2-input XOR gates required by the regular normal basis multiplication c = ab,
as given by the formulae in Eq. (3).

4.2 Complexity of NewPro Multiplication in GF(23)

The proposed NewPro algorithm requires the existence of a special element α
of GF(2k) such that the matrix αλ has fewer than k(2k − 1) terms of type β2i .
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Table 2. The number of terms in the matrix αλ for GF(23).

α Terms

β 17

β2 17

β4 17

β + β2 14

β + β4 14

β2 + β4 14

For a small field such as GF(23), we can try all possible candidates for α. Since
our construction excludes α as 0 or 1, we need to try only 6 different α values
in GF(23). We have performed this search using a simple Mathematica code,
and obtained the number of elements in the αλ matrix for each value of α,
as shown in Table 2. Note that without the transformation, the matrix λ has
k(2k − 1) = 15 terms.

The search shows that for α = β + β2, α = β + β4, and α = β2 + β4 values
the matrix αλ has only 14 terms, which is 1 fewer than 15, the optimal value
for the matrix λ.

We show how to obtain the αλ matrix for α = β + β2. We first multiply
(β + β2) with every term of the matrix λ, and then substitute the powers of β
which are not powers of 2, using the normal representations of all elements given
in Sect. 3.1.

αλ = (β + β2)

⎡

⎣
β2 β + β4 β2 + β4

β + β4 β4 β + β2

β2 + β4 β + β2 β

⎤

⎦ =

⎡

⎣
β β2 β4

β2 β + β4 β2 + β4

β4 β2 + β4 β + β2 + β4

⎤

⎦ .

As is observed, this matrix has 14 terms. We can expand this matrix in terms
of λ(r) matrices and powers of β, to obtain

αλ =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ β +

⎡

⎣
0 1 0
1 0 1
0 1 1

⎤

⎦β2 +

⎡

⎣
0 0 1
0 1 1
1 1 1

⎤

⎦β4 .

Since we destroyed the shift property (Eq. 10) of λ(r) matrices by multiplying α
with λ, these matrices no longer have the same number of 1s, however, the total
number of 1s is 3 + 5 + 6 = 14, instead of 5 + 5 + 5 = 15. Finally, we obtain the
individual components of the c̄ vector as

c̄0 = ā0b̄0 + ā1b̄1 + ā2b̄2 ,

c̄1 = ā0b̄1 + ā1b̄0 + ā1b̄2 + ā2b̄1 + ā2b̄2 ,

c̄2 = ā0b̄2 + ā1b̄1 + ā1b̄2 + ā2b̄0 + ā2b̄1 + ā2b̄2 .
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which requires 11 2-input XOR gates, instead of 12. The other two α values also
produce the λ matrices with exactly 14 terms, and the associated formulae for
the components c̄r are easily obtained.

4.3 Complexity of NewPro Multiplication in GF(24)

Given the irreducible polynomial p(x) = x4 + x + 1 generating the field GF(24),
we obtain an optimal normal element β = x3 using the construction in Theorem
1. This field has Type 1 optimal normal basis since k + 1 = 5 is prime, and 2 is
primitive in Z5 (Table 3).

Table 3. The normal and the powers of β = x3 representations of elements in GF(24)
with irreducible polynomial p(x) = x4 + x + 1.

β8 + β4 + β2 + β β0 β8 β8

β β1 β9 β4

β2 β2 β10 β8 + β4 + β2 + β

β8 β3 β11 β

β4 β4 β12 β2

β8 + β4 + β2 + β β5 β13 β8

β β6 β14 β4

β2 β7 β15 β8 + β4 + β2 + β

The 4 × 4 λ matrix is obtained as
⎡
⎢⎢⎣

β2 β3 β5 β9

β3 β4 β6 β10

β5 β6 β8 β12

β9 β10 β12 β16

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

β2 β8 β8 + β4 + β2 + β β4

β8 β4 β β8 + β4 + β2 + β

β8 + β4 + β2 + β β β8 β2

β4 β8 + β4 + β2 + β β2 β

⎤
⎥⎥⎦

The number of terms in the λ matrix for an optimal basis β ∈ GF(24) is equal
to k(2k − 1) = 28. The matrix λ can be expanded as in terms of λ(r) matrices
and powers of 2 powers of β as

λ =

⎡

⎢
⎢
⎣

0 0 1 0
0 0 1 1
1 1 0 0
0 1 0 1

⎤

⎥
⎥
⎦β +

⎡

⎢
⎢
⎣

1 0 1 0
0 0 0 1
1 0 0 1
0 1 1 0

⎤

⎥
⎥
⎦ β2 +

⎡

⎢
⎢
⎣

0 0 1 1
0 1 0 1
1 0 0 0
1 1 0 0

⎤

⎥
⎥
⎦β4 +

⎡

⎢
⎢
⎣

0 1 1 0
1 0 0 1
1 0 1 0
0 1 0 0

⎤

⎥
⎥
⎦ β8 .

The total number of 1s in these matrices is also 28, each of which has 7 1s.
Therefore, we need 6 2-input XOR gates to computes each one of the cr terms
for r = 0, 1, 2, 3, which totals to 24 XOR gates. Similar to the case GF(23), we
performed an exhaustive search over the set GF(24) and obtained the list of α
values, and the minimum number of terms in the matrix αλ, as summarized in
Table 4.
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Table 4. The minimum number of terms in the matrix αλ for GF(24).

α Terms

β 25

β2 25

β4 25

β8 25

It turns out that there are only 4 α values, which minimize the number of terms
in the matrix αλ; the minimum value is found as 25. We obtain the matrix αλ
for α = β, by multiplying every element of the matrix by α. The elements of
the matrix which contains the powers of β which are not powers of 2 are then
replaced with their normal expansions.

αλ =

⎡

⎢
⎢
⎣

β8 β4 β β + β2 + β4 + β8

β4 β + β2 + β4 + β8 β2 β
β β2 β4 β8

β + β2 + β4 + β8 β β8 β2

⎤

⎥
⎥
⎦ .

The matrix αλ has exactly 25 terms. It can be expanded in terms of λ(r) matrices
and powers of 2 powers of β as

αλ =

⎡

⎢
⎢
⎣

0 0 1 1
0 1 0 1
1 0 0 0
1 1 0 0

⎤

⎥
⎥
⎦ β +

⎡

⎢
⎢
⎣

0 0 0 1
0 1 1 0
0 1 0 0
1 0 0 1

⎤

⎥
⎥
⎦β2 +

⎡

⎢
⎢
⎣

0 1 0 1
1 1 0 0
0 0 1 0
1 0 0 0

⎤

⎥
⎥
⎦ β4 +

⎡

⎢
⎢
⎣

1 0 0 1
0 1 0 0
0 0 0 1
1 0 1 0

⎤

⎥
⎥
⎦ β8 .

The total number of 1 s in these matrices is also equal to 25. The number of 2-input
XOR gates to compute c̄r terms for r = 0, 1, 2, 3 is found as 6 + 5 + 5 + 5 = 21.

5 The General Case for GF(2k)

The NewPro transformation and the multiplication algorithms require the exis-
tence of an element α of GF(2k), that minimizes the number of terms in the αλ
matrix. We gave detailed analyses of the NewPro multiplication for the fields
GF(22), GF(23) and GF(24) together with all special α values. It turns out that
the number of terms in the αλ matrix are equal to 5, 14 and 25 for GF(22),
GF(23) and GF(24) respectively, while the original λ matrices have 6, 15 and 28
terms.

However, we need a more detailed analysis of the proposed NewPro algorithm,
specifically, we identify the following types of problems to study:

1. Due to the optimal normal basis theorem, we know that λ has k(2k−1) terms
for GF(2k). What is the exact number of terms in the αλ matrix for GF(2k)
for different values of k and different (Type 1 and 2) bases?
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2. Does there exist an α for any k such that number of terms in αλ is less than
k(2k − 1)?

3. Is there a constructive or non-exhaustive method for finding α that reduces
the number of terms to fewer than k(2k − 1)?

The answers to these questions for Type 2 optimal normal bases seem to be
negative for k > 3. For such normal bases, no α can bring down the number of
terms in αλ to a quantity below k(2k − 1). The case for k = 3, in which we were
able to reduce the number of terms from 15 to 14, seems to be special. We do
not have a complete proof of these assertions on Type 2.

However, we settle the above questions for Type 1 optimal normal bases in
the following fashion.

6 Optimality for the Type 1 Case

Let us assume that GF(2k) has a Type 1 optimal normal basis; this implies that
k +1 is prime and 2 is primitive in Zk+1. Moreover, the optimal normal element
β is a primitive (k + 1)st root of 1 in GF (2k). For the brevity of the notation,
we write k = 2m and use B to represent the basis set B = {β0, β1, . . . , βk−1}. As
before, the k × k matrix λ is defined as

λij = β2i+2j = βiβj

for 0 ≤ i, j ≤ k − 1. For example, for k = 4, we have

λ =

⎡

⎢
⎢
⎣

β1 β3 1 β2

β3 β2 β0 1
1 β0 β3 β1

β2 1 β1 β0

⎤

⎥
⎥
⎦ .

Lemma 1. The elements in the entries (0,m), (1,m+ 1), . . . , (k − 1,m+ k − 1)
of λ, where the indices are computed mod k, are all 1s.

Proof. What we need to show is βiβm+i = 1 for 0 ≤ i ≤ k −1, where the indices
are computed mod k. Let θi = βiβm+i, and put θ = θ0 = β0βm. Then

θi = β2i+2m+i

=
(
β2m+1

)2i

= θ2
i

.

Therefore it suffices to show that θ = 1. Calculating,

θ2
m

= β2mβ22m = βmβ0 = θ ,

so that θ2
m−1 = 1. On the other hand, θ is a power of β and β2m+1 = 1, so

θ2m+1 = 1. Therefore the order of θ divides d = gcd(2m − 1, 2m + 1). Since
p = 2m + 1 is prime, d is either 1 or p. But 2m − 1 = 2

p−1
2 − 1 and this cannot

be divisible by p for otherwise 2 is a quadratic residue modulo p and so cannot
be primitive. Therefore, d = 1 and θ = 1. ��
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The entry βiβm+i = β0 +β1 + · · ·+βk−1 contributes k to the sum of the number
of basis vectors appearing in row i. Since the basis is optimal, the total number
of these is 2k−1. Each of the remaining k−1 entries is a single βj . By optimality,
the elements in row i excluding the unit in column m + i is a permutation of
β0, . . . , βi−1, βi+1, . . . , βk−1. We record the fact that the elements in row r of λ
is a permutation of the elements B − {βr}.

Lemma 2. For an optimal normal basis of Type 1 with k+1 = 2m+1, generated
by β = β0, the row r for 0 ≤ r ≤ k − 1 of λ is a permutation of B − {βr} with 1
appearing in the column index m+r modulo k. Therefore βr ·{β0, β1, . . . , βk−1} =
B − {βr} .

Next, we consider the matrix βrλ.

Lemma 3. Row m + r of βrλ is a permutation of B. Each of the other rows is
a permutation of B minus some basis element.

Proof. We will give the proof for r = 0. Note that every row in λ has a 1 (the
entries in positions (0,m), (1,m + 1), . . . , (k − 1,m + k − 1) are 1s), so in βλ, β0

appears in each row. By Lemma 2, the rth row of λ is a permutation of B−{βr}.
Therefore the rth row of βλ is

1. a permutation of B − {1} for r = m,
2. a permutation of B − {β0βr} for r �= m (note: β0βr = βj for some j in this

case). ��
Therefore, we conclude that the total number of basis vectors appearing in the
matrix is

k + (k − 1)(2k − 1) = k(2k − 1) − (k − 1) ,

which is k − 1 fewer than that of the multiplication matrix λ. We state the
following theorem for the Type 1 case, but omit its proof.

Theorem 2. Suppose α has t nonzero coefficients in its normal basis expansion.
Then the number of terms in the matrix αλ is

k(2k − 1) + (k − t) (t(2k − 2) − (2k − 1)) .

In particular α = βi for 0 ≤ i ≤ k − 1 are the only αs with the property that αλ
matrix has fewer than k(2k − 1), i.e., exactly k(2k − 1) − (k − 1) basis vectors.

7 Further Work

By slightly changing the definition of the multiplication operation, we introduced
a new normal basis multiplication algorithm which requires fewer XORs than
the optimal normal multiplication algorithm. We proved for the Type 1 case that
the number of terms in the αλ is k − 1 fewer than that of λ matrix for α = βi

for some 0 ≤ i ≤ k − 1. Appendix A gives the λ and αλ matrices for GF(2k)
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for k = 2, 4, 10, 12, which are the first 4 fields that has Type 1 optimal normal
bases.

Moreover, experimentation shows that the field GF(23) and Type 2 optimal
normal basis matrix αλ has 14 terms for α = β+β2, α = β+β4, and α = β2+β4

instead of 15 terms, which is clearly unlike the Type 1 case, i.e., it is not k−1 = 2
fewer than k(2k − 1) = 15. However the case of GF(23) seems to be an anomaly,
and it appears that for a Type 2 optimal normal basis GF(2k) for k > 3, there
is no α value which gives smaller than k(2k − 1) terms in αλ. However, we do
not have a complete proof at this time.

It is also possible to view αλ as matrix multiplication by αI , so one can
study the suitability of transformations defined by premultiplying λ by other
kinds of matrices.

Appendix A: The Type 1 λ and αλ Matrices

The λ and αλ Matrices for GF(22)

The irreducible polynomial is x2 + x + 1. The optimal normal element is β = x.
The total count of 1 s in λ and αλ matrices are k(2k − 1) = 6 and k(2k − 1) −
(k − 1) = 5, respectively.

λ =

[
β1 β0

β0 β1

]

, β0λ =

[
1 β0

β0 β1

]

, β1λ =

[
β0 β1

β1 1

]

The λ and αλ Matrices for GF(24)

The irreducible polynomial is x4 + x3 + 1. The optimal normal element is β =
x + 1. The total count of 1 s in λ and αλ matrices are k(2k − 1) = 28 and
k(2k − 1) − (k − 1) = 25, respectively.

λ =

⎡

⎢
⎢
⎢
⎣

β1 β3 1 β2

β3 β2 β0 1
1 β0 β3 β1

β2 1 β1 β0

⎤

⎥
⎥
⎥
⎦

, β0λ =

⎡

⎢
⎢
⎢
⎣

β3 β2 β0 1
β2 1 β1 β0

β0 β1 β2 β3

1 β0 β3 β1

⎤

⎥
⎥
⎥
⎦

, β1λ =

⎡

⎢
⎢
⎢
⎣

β2 1 β1 β0

1 β0 β3 β1

β1 β3 1 β2

β0 β1 β2 β3

⎤

⎥
⎥
⎥
⎦

β2λ =

⎡

⎢
⎢
⎢
⎣

β0 β1 β2 β3

β1 β3 1 β2

β2 1 β1 β0

β3 β2 β0 1

⎤

⎥
⎥
⎥
⎦

, β3λ =

⎡

⎢
⎢
⎢
⎣

1 β0 β3 β1

β0 β1 β2 β3

β3 β2 β0 1
β1 β3 1 β2

⎤

⎥
⎥
⎥
⎦
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The λ and αλ Matrices for GF(210)

The irreducible polynomial is x10 + x7 + 1. The optimal normal element is β =
x6 +x3 +x2 +x. The total count of 1 s in λ and αλ matrices are k(2k−1) = 190
and k(2k−1)−(k−1) = 181, respectively. Below we give λ and only β0λ matrix.

λ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β1 β8 β4 β6 β9 1 β5 β3 β2 β7

β8 β2 β9 β5 β7 β0 1 β6 β4 β3

β4 β9 β3 β0 β6 β8 β1 1 β7 β5

β6 β5 β0 β4 β1 β7 β9 β2 1 β8

β9 β7 β6 β1 β5 β2 β8 β0 β3 1
1 β0 β8 β7 β2 β6 β3 β9 β1 β4

β5 1 β1 β9 β8 β3 β7 β4 β0 β2

β3 β6 1 β2 β0 β9 β4 β8 β5 β1

β2 β4 β7 1 β3 β1 β0 β5 β9 β6

β7 β3 β5 β8 1 β4 β2 β1 β6 β0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, β0λ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β8 β2 β9 β5 β7 β0 1 β6 β4 β3

β2 β4 β7 1 β3 β1 β0 β5 β9 β6

β9 β7 β6 β1 β5 β2 β8 β0 β3 1
β5 1 β1 β9 β8 β3 β7 β4 β0 β2

β7 β3 β5 β8 1 β4 β2 β1 β6 β0

β0 β1 β2 β3 β4 β5 β6 β7 β8 β9

1 β0 β8 β7 β2 β6 β3 β9 β1 β4

β6 β5 β0 β4 β1 β7 β9 β2 1 β8

β4 β9 β3 β0 β6 β8 β1 1 β7 β5

β3 β6 1 β2 β0 β9 β4 β8 β5 β1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The λ and αλ Matrices for GF(212)

The irreducible polynomial is x12+x10+x2+x+1. The optimal normal element
is β = x11 + x7 + x3 + x2 + x. The total count of 1 s in λ and αλ matrices are
k(2k − 1) = 276 and k(2k − 1) − (k − 1) = 265, respectively. Below we give λ
and only β0λ matrix.

λ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β1 β4 β9 β8 β2 β11 1 β6 β10 β5 β7 β3

β4 β2 β5 β10 β9 β3 β0 1 β7 β11 β6 β8

β9 β5 β3 β6 β11 β10 β4 β1 1 β8 β0 β7

β8 β10 β6 β4 β7 β0 β11 β5 β2 1 β9 β1

β2 β9 β11 β7 β5 β8 β1 β0 β6 β3 1 β10

β11 β3 β10 β0 β8 β6 β9 β2 β1 β7 β4 1
1 β0 β4 β11 β1 β9 β7 β10 β3 β2 β8 β5

β6 1 β1 β5 β0 β2 β10 β8 β11 β4 β3 β9

β10 β7 1 β2 β6 β1 β3 β11 β9 β0 β5 β4

β5 β11 β8 1 β3 β7 β2 β4 β0 β10 β1 β6

β7 β6 β0 β9 1 β4 β8 β3 β5 β1 β11 β2

β3 β8 β7 β1 β10 1 β5 β9 β4 β6 β2 β0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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β0λ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β4 β2 β5 β10 β9 β3 β0 1 β7 β11 β6 β8

β2 β9 β11 β7 β5 β8 β1 β0 β6 β3 1 β10

β5 β11 β8 1 β3 β7 β2 β4 β0 β10 β1 β6

β10 β7 1 β2 β6 β1 β3 β11 β9 β0 β5 β4

β9 β5 β3 β6 β11 β10 β4 β1 1 β8 β0 β7

β3 β8 β7 β1 β10 1 β5 β9 β4 β6 β2 β0

β0 β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11

1 β0 β4 β11 β1 β9 β7 β10 β3 β2 β8 β5

β7 β6 β0 β9 1 β4 β8 β3 β5 β1 β11 β2

β11 β3 β10 β0 β8 β6 β9 β2 β1 β7 β4 1
β6 1 β1 β5 β0 β2 β10 β8 β11 β4 β3 β9

β8 β10 β6 β4 β7 β0 β11 β5 β2 1 β9 β1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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