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Abstract—We describe a method of carrying multiplication in 
the binary extension fields. The new method fully operates on 
the Fourier representations of the field elements by 
successively applying the convolution property and a reduction 
technique defined on the Fourier coefficients. With some 
careful parameter selection, the method yields highly parallel 
architectures for operations involving several field 
multiplications such as the scalar multiplication calculation of 
elliptic curve cryptography.  

Keywords-Spectral modular arithmetic, elliptic curve 
cryptography, polynomial transforms. 

I.  INTRODUCTION  
Spectral techniques for integer multiplication have been 

known for over a quarter of a century. Because of the 
overheads related to the backward and forward Fourier 
transform calculations; these methods (e.g. Schonhage-
Strassen [1]) are not effective when operand sizes are small. 
However, asymptotically superior spectral methods perform 
significantly better as the operand sizes get larger. 
Nevertheless; the asymptotic crossovers are still larger than 
the key sizes of most cryptosystems, so some naive or 
variations of Karatsuba method [2] having lower complexity 
are preferred in practice. Similarly, direct use of spectral 
methods for finite field arithmetic has the same behavior. 

In recent studies ([3] [4] [5] [6] [7]), spectral methods are 
utilized for modular integer and polynomial arithmetic. 
These studies proposed a modular reduction on the Fourier 
coefficients. Since the reduction fully works in the spectrum, 
these methods give highly parallel architectures for 
performing operations involving several modular 
multiplications. In this study, we introduce how these ideas 
can be extended to binary extension fields. After giving a 
brief introduction to binary extension fields, we formally 
define the Discrete Fourier Transform (DFT) over a 
polynomial ring R. We, then, present our main contribution 
namely spectral modular reduction and multiplication for 
binary extension fields. 

The most essential point of this utilization is to find some 
suitable DFT domains having acceptable transform lengths 
for certain principle roots of unity. Unfortunately, if p is 

small, Ζp (the ring of integers modulo p) admits very short 
transform lengths (e.g. Ζ2 allows only a transform of length 
two). One way to overcome this problem is to use some 
polynomial rings over Ζp as the domain of DFT. In Sec. 3, 
we present such suitable spectra. Section 4 is devoted to 
performance improvements and applications. We conclude 
our work with some final comments in the last section.  

II. SPECTRAL MODULAR ARITHMETIC  

A. Binary Finite Fields  
Binary extension fields can be represented by the set of 

polynomials with polynomial addition and multiplication 
modulo an irreducible polynomial f(t) over GF(2) having 
degree k. The degree of the polynomial f(t) is also referenced 
as the degree of the extension. When k is not a prime, the 
field GF(2k) is called a composite field. Although composite 
fields enjoy the simplified arithmetic, their usage in practice 
(particularly in elliptic curve cryptography (ECC)) has some 
security concerns. In fact, ANSI X9.63 [8] explicitly 
excludes the use of elliptic curves over composite fields. 
Therefore, we do not discuss the optimizations making use 
of these special cases and assume k is arbitrary. 

B. Fourier Transform (DFT)  
Spectral techniques are widely accepted and used in the 

field of digital signal processing, hence; most existing 
notation and concept comes from this theory (see 
[9][10][11]). We believe that a more appropriate notation 
permits us to have a better understanding of using the 
spectral techniques for the computer arithmetic related 
problems. In this sense, we define the DFT as a map from a 
polynomial frame to a Fourier ring after introducing these. 

Definition 1: Let R be a ring, the set of ordered d-tuples 
ℱd Ri

d
0
1

=
−⊕=  forms a ring with component-wise addition 

and multiplication (also called direct sum of rings). For 
notation purposes, we denote these d-tuples with 
polynomials (i.e. (X1, X2, …, Xd) are written as X0+X1t+ … 
+Xd-1td-1). We named the ring ℱd as the Fourier ring over R; 
moreover the elements are called spectral polynomials 
having spectral coefficients. 
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Fourier rings can be considered over various ring 
structures. For instance in [3], R is taken as Ζn and a 
construction for modular integer arithmetic is presented. 
Here we take R as a factor ring, R = Ζ2[γ]/(g(γ)), where g(γ) 
is an arbitrary polynomial in Ζ2[γ] (recall that Ζ2[γ] 
represents the ring of polynomials over Ζ2 using 
indeterminate γ). 

Remark 1: Since the arithmetic is modulo 2, we add the 2 
subscript to our notation and denote the Fourier ring by ℱ2

d .  
On the other hand, the set of d-tuples (X0, X1, …, Xd-1) 

forms another ring when it is equipped with the usual 
polynomial addition and multiplication denoted by (Ζ2[γ])[t] 
using the indeterminate t. The coefficients of the elements of 
this ring are polynomials in Ζ2[γ]. We consider a subset of 
this ring as the domain of the DFT map. 

Definition 2: Let d and m be positive integers, we define 
a polynomial frame for i = 0, 1, …, d-1 as 
Ζ2

(d,m) = {y(t) ∈ (Ζ2[γ])[t] : degt(y(t)) < d and degγ(yi(γ)) < m  
Observe that Ζ2

(d,m) is a closed set under polynomial 
addition whereas it is no longer closed under polynomial 
multiplication (i.e. the product of two elements could be out 
of Ζ2

(d,m) frame). Note that, we define Ζ2
(d,m) as a simple 

subset of (Ζ2[γ])[t] without any structure on it. The frame 
Ζ2

(d,m) should not be taken as R[t]/(f(t)) = (Ζ2[γ]/(g(γ))[t])/(f(t)) 
where g(γ) = γm-1 defines the reduction on the coefficients 
and f(t) = td-1 describes the reduction on t. With this 
description we have a better understanding of the overflows 
and embeddings to the Fourier rings. Now, we can define the 
DFT map. 

Definition 3: Assume that Ζ2
(d,m) is a polynomial frame; 

F2
d is a Fourier ring over R = Ζ2[γ]/(g(γ)) where g(γ) is a 

degree m-1 polynomial over Ζ2 and ω is a primitive d-th root 
of unity in R. The DFT map over R is an invertible set map 
DFTd

ω : Ζ2
(d,m)  ℱ2

d sending x(t) to X(t) defined as follows  

 ∑
−

=

==
1

0
)(mod:))(((

d

j

ij
jdi gxtxDFTX γωω   (1) 

with the inverse 

 ∑
−

=

−==
1

0

1 )(mod:))(((
d

j

ij
jdi gXdtXIDFTx γωω        (2) 

where i = 0, 1, …, d-1. Moreover, we write 

)()( tXtx DFT⎯⎯ →←  

and say x(t) and X(t) are transform pairs, x(t) is called a time 
polynomial with time coefficients and sometimes X(t) is 
called as the spectrum of x(t). 

Notice that the coefficient calculations in both (1) and (2) 
are carried over R = Ζ2[γ]/(g(γ)). Therefore, the summation 
on the right hand side of (1) is clearly well defined since ω is 
a principle root of unity. On the other hand, it is not 
necessarily correct to make the same assumption in (2). First 
of all, one has to guarantee the existence of the inverse, even 

which is not sufficient. Pollard [12] mentions that the 
existence of primitive root d-th of unity and the inverse of d 
do not guarantee the existence of a DFT over a ring. He adds 
that a DFT exists in ring R if and only if each quotient field 
R/M (where M is maximal ideal) possesses a primitive root 
of unity. If R = Ζ2[γ]/(g(γ)) is taken, the following theorem 
specifies a more convenient version of this result.  

Theorem 1: A d-point DFT defined over R = Ζ2[γ]/(g(γ)) 
for a primitive root of unity ω, supports circular convolution 
if and only if the following conditions are satisfied 

i. ωd 1 mod g(γ) 
ii. gcd(d, 2) = 1, i.e. d is odd 

iii.  
⎩
⎨
⎧

=
≠

≡∑ −

= drifd
drifd

i mod0
mod001

0
irω  

Proof : See Sec. 8 of Nussbaumer [13].  
Remark that instead of validating the condition (iii) one 

can simply check whether gcd(ωe-1, g(γ)) = 1 for e = 1, 2, …, 
d-1 is satisfied or not. For instance in R = Ζ2[γ]/(γ5-1) 
condition (i) and (ii) are valid since ω = γ had order 5 and 
gcd(5,2) = 1. However, a 5-point DFT does not exist because 
condition (iii) fails; gcd(ω -1, γ5-1) = ω -1 ≠ 1. 

C. Spectral Modular Reduction (SMR) 
As we are interested in binary field arithmetic, we start 

with discussing the relation between the elements of these 
fields and the polynomial frames using evaluation maps.  

Let x'(γ) = x'0+x'1 γ + … + x'k-1 γk-1 be an element of GF(2k) 
for x'i ∈ GF(2), first we want to see x'(γ) as an element of 
Ζ2

(d,v). In order to do this we chop x'(γ) into d words of length 
v such that k < d v, and represent this new polynomial as x(t) 
= x0+x1 t + … + xd-1 td-1  using the indeterminate t. Observe 
that xi = x'iv+x'iv+1 γ1 + … + x'iv+v-1 γv-1 for i = 0, 1, …, d-1 and 
the evaluation of x(t) at t = γv gives x'(γ). Once Ζ2

(d,v) 
representations of the elements of GF(2k) are computed, 
these base t = γv polynomials can be embedded into the DFT 
machinery.  

Definition 4: Let x'(γ), y'(γ) and f'(γ) be polynomials over 
GF(2) so that y'(γ)≡x'(γ) mod f'(γ) and degγ(y'(γ))<degγ(f'(γ)). 

If )()( tXtx DFT⎯⎯ →← , )()( tYty DFT⎯⎯ →←  and )()( tFtf DFT⎯⎯ →←  
for a DFT map where x(t), y(t) and f(t) are evaluation 
polynomials of x'(γ), y'(γ) and f'(γ) respectively, we call Y(t) 
as the spectral modular reduction of X(t) with respect to F(t). 

We present our spectral algorithms as the translations of 
some time domain algorithms using the properties of DFT 
such as linearity, convolution and time/frequency shifts (see 
[4]). Although it is possible to translate a variant of the 
standard polynomial division, we prefer to present a 
Montgomery type [14] reduction method.  

Algorithm 1: Time domain algorithm for SMR  
Let f(t) ∈ Ζ2

(d,u) and x(t) ∈ Ζ2
(d,v) be degree e-1 and d-1 

evaluation polynomials of f'(γ) and x'(γ) such that d ≥ e, u 
=⌊v/2⌋ and f0 =1 (here we assume f'0 =1. Note that in case of 
the least word of f'(γ) being not equal to 1, f(t) is taken as an 
evaluation polynomial of a multiple of f'(γ). 
Input: evaluation polynomials x(t) and f(t). 
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Output: y(t) ≡ x(t) t-(d-e) modulo f(t). 
1. y(t) := x(t); α :=0;  
2. for i = 0 to d-e  
3.      β := y0 + α mod γu 
4.      α := (y0+ α + β) divide γu 
5.      y(t) := y(t) + β f(t)  
6.      y(t) := y(t) + y0 
7.      y(t) := y(t)/t 
8. end for 
9. return y(t)  

After giving some related notation, we translate 
Algorithm 1 to the spectrum using DFT properties. 

Notation 1: Assume that ω is a principal d-th root of 
unity; we let γ(t) be the spectral polynomial with coefficients 
consists of the negative powers of ω i.e. Γ(t) = 1 + ω-1t + ω-2 

t2 + … + ω-(d-1)t(d-1). 
Notation 2:Let x0 be a constant in (Ζ2[γ])[t], the transform 

of x0 with respect to a DFT map is given by a spectral 
polynomial with all coefficients equal to x0. We denote 
DFT(x0) by simply x0(t). For instance; for x0 = 5+γ, x0(t) = 
(5+γ)(t) = (5+γ) + (5+γ)t + ... + (5+γ)td-1 is such a spectral 
polynomial having degree d-1.  

Algorithm 2: Spectral Reduction Algorithm  
Assume that DFTd

ω : Ζ2
(d,m)  ℱ2

d exists where ℱ2
d is a 

Fourier ring over Ζ2[γ]/(g(γ)) for a monic polynomial g(γ) 
over Ζ2 not necessarily irreducible. Let f(t) and x(t) are 
evaluation polynomials of f'(γ)and x'(γ) respectively and 

satisfy )()( tXtx DFT⎯⎯ →← and )()( tFtf DFT⎯⎯ →←  as described. 
Input: X(t) and F(t). 
Output: y(t) ≡ DFT(x(t) t-(e-d) mod f(t)). 

1. Y(t) := X(t); α := 0;  
2. for i = 0 to d-e  
3.      y0 := d-1 (Y0+Y1+…+Yd) mod g(γ)  
4.      β := y0 + α mod γu 
5.      α := (y0+ α + β) divide γu 
6.      Y(t) := Y(t) + β F(t) mod g(γ)  
7.      Y(t) := Y(t) + (y0 + β)(t) mod g(γ) 
8.      Y(t) := Y(t) ⊙ Γ(t) mod g(γ) 
9. end for 
10. return Y(t)  

Our next step is to prove that Algorithm 1 and 2 agrees. 
Theorem 2: Algorithm 1 and 2 agree; in other words 

there exists a DFT relation between the intermediate and 
output data in two domains at all times. 

Proof: Let (x(t), X(t)) and (f(t), F(t)) be transform pairs. 
In Step 4, we compute the least significant coefficient, y0 of 
the time polynomial y(t), using the shifting property of DFT 
(notice that in Algorithm 1, y0 comes for free). Once y0 is 
computed, in Step 5 and 6, the parameters β and carry α are 
generated.   

In Step 7, a β multiple of F(t) is added to Y(t), this 
updates Y(t) such that y0 = 0 mod γu. In fact, by linearity, this 
is equivalent to Step 6 of Algorithm 1. 

Since carry α is saved in order to add to the consecutive 
digit in the next run of the loop, a division by t can be 

performed after eliminating the contribution of y0 to the 
spectral polynomial Y(t). Since, Step 7 updates y0 with y0 + β, 
the computation, (Y(t)-(y0+β)(t)), sets zeroth time coefficient 
of Y(t) to zero (observe that (y0+β) ∈ Ζ is a constant so 
(y0+β)(t) is a fixed term polynomial, see Notation 2). If it is 
followed by a Γ(t) multiplication, a circular shift is 
implemented in Steps 8 and 9.  

It is still early to conclude that these two algorithms are 
transform pairs before showing that no overflows exist in the 
domain Ζ2

(d,v). Now, examine how big the degrees of the 
coefficients get. Initially, degγ(yi) < v for i = 0, 1, …, d-1 
since y(t) = x(t) is in Ζ2

(d,v). As no added value to the 
coefficients has degree more than v (maximum is attained 
with β f(t) calculation but having f(t) in Ζ2

(d,u) and degγ(β) < 
degγ(γu) = u imply that degγ(β fi) < u+u=⌊v/2⌋ + ⌊v/2⌋ <v), 
the intermediate values and the output y(t) of the time 
simulation are in Ζ2

(d,v). Therefore, no overflows occur; 
Algorithm 1 and 2 generate the transform pair y(t) and Y(t) 
respectively. □ 

With Algorithm 2 we have completed our primary 
discussion on spectral modular reduction. Next, we 
introduce the spectral modular multiplication for 
polynomials.  

D. Spectral Modular Multiplication (SMM) 
Convolution and SMR can be combined to harvest a 

spectral field multiplication algorithm for binary extension 
fields if a suitable DFT transform exist.  

Algorithm 3: Spectral Modular Product 
Assume that there exists a DFT map DFTd

ω : Ζ2
(d,m)  

ℱ2
d where ℱ2

d is a Fourier ring over R = Ζ2[γ]/(g(γ)) for a 
monic polynomial g(γ) over Ζ2 not necessarily irreducible. 
Let X(t), Y(t) and F(t) be transform pairs of x(t), y(t) and f(t) 
(the evaluation polynomials of x'(γ), y'(γ) and f'(γ) 
respectively as described in the previous section) 
respectively where x(t), y(t) in Ζ2

(s,u) and f(t) in Ζ2
(s+1,u) for 

s := ⌈ d/2⌉, u = ⌊v/2⌋ and f0=1.  
Input: X(t), Y(t) and F(t); spectral polynomials. 
Output: Z(t) ≡ DFT(z(t)) where z(γu) = z'(γ) and z'(γ) ≡ x'(γ) 
y'(γ) γ-du mod f'(γ), 
Procedure SMP(X(t), Y(t)) 

1. Z(t) := X(t) ⊙ Y(t); α := 0;  
2. for i = 0 to d-e  
3.      z0 := d-1 (Z0+Z1+…+Zd) mod g(γ)  
4.      β := - (z0 + α) mod γu 
5.      α := (z0+ α + β) divide γu 
6.      Z(t) := Z(t) + β F(t) mod g(γ)  
7.      Z(t) := Z(t) - (z0 + β)(t) mod g(γ) 
8.      Z(t) := Z(t) ⊙ Γ(t) mod g(γ) 
9. end for 
10. return Z(t)  

Algorithm 4: Spectral Modular Multiplication 
Assume that DFTd

ω : Ζ2
(d,m)  ℱ2

d. Let x'(γ), y'(γ) exists and 
monic f'(γ) be the polynomials over Ζ2 such that the degrees 
of x'(γ) and y'(γ) are less than deg(f'(γ)) = k = su. 
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Input: Polynomials x'(γ), y'(γ) and monic f'(γ) in GF(2k). 
Output: z'(γ) ≡ x'(γ) y'(γ) mod f'(γ) 

1. Compute base t = γu evaluation polynomials x(t), 
y(t) and f(t) of x'(γ), x'(γ) and f'(γ) such that f0 =1  

2. Compute λ(t) where λ'(γ) = γud  mod f'(γ). 
3. F(t) := DFT( f(t) ) 
4. Xd(t) := DFT(xd(t)) 
5. Y(t) := DFT(y(t)) 
6. Z(t) := SMP(Xd(t), Y(t)) 
7. z(t) := IDFT(Z(t)) 
8. return z'(γ) 

Our next step is to prove that Algorithm 4 indeed 
computes the field multiplication. 

Theorem 3: Let x'(γ), y'(γ) and monic f'(γ) be the 
polynomials over Ζ2 such that the degrees of x'(γ) and y'(γ) 
are less than deg(f'(γ)). Algorithm 4 computes the modular 
multiplication z'(γ) ≡ x'(γ) y'(γ) mod f'(γ) 

Proof: Recall that SMP function returns Z(t) where its 
time polynomial z(t) satisfies z(t) ≡ x(t) y(t) t-d mod f(t). If the 
time polynomial of Step 7 is examined, one gets 

IDFT(SMP(Xd(t), Y(t))) = x(t) td y(t) t-d mod f(t)  
= x(t) y(t) mod f(t) 

since xd(t) = x(t) td mod f(t). This gives the proof subject to 
the condition that no overflows occur. Notice that the steps 
other than Step 7 are usual transform calculations and they 
do not cause any overflows, hence it suffices to analyze Step 
7. Fortunately, SMP generates time polynomials in Ζ2

(d,v) 

and its intermediate values always lies in Ζ2
(d,v) frame (see 

Theorem 2). Therefore Algorithm 4 agrees with its time 
simulation and computes the modular multiplication. □ 

III. SUITABLE SPECTRUMS FOR EXTENSION FIELDS  
An employment of spectral methods partitions a bigger 

problem into small pieces and then process on the pieces in a 
parallel fashion. Notice that the computations in these pieces 
are carried in the ring, R = Ζ2[γ]/(g(γ)), hence for a proper g(γ) 
selection, spectral methods benefit most. 

A. Polynomial Rings with  defining binomials  
The most convenient choice of g(γ) is a binomial. 

Moreover, if the principal root of unity, ω is chosen as a 
power of γ, the spectral coefficients are computed only using 
XORs and circular shifts. Although polynomials rings 
having defining binomials are good candidates for their 
simplified arithmetic, they suffer from the short transform 
lengths. For instance γn +1 has the linear factor Φ1(γ) = γ +1 
for all n, and by Theorem 1 only a transform length of two 
can be defined over these rings. However, it is possible to 
overcome such restrictions using the pseudo transforms (PT).  

Pseudo number transforms (PNT) are initially defined 
over subrings of Fermat or Mersenne rings. They support 
longer transform lengths and benefit the simplified 
arithmetic of operating in the larger Mersenne or Fermat 
rings [4]. A similar approach is possible for constructing 
transforms over polynomial rings. If g(γ) = γn+1 is 
considered, a nice transform with a longer length can be 
extracted over a subring defined by a proper factor of g(γ).  

Example 1: Lets consider the DFT over R = Ζ2[γ]/(γ7+1), 
with the principal root of unity ω = γ. Since γ7+1 has the 
following factorization  

γ7+1 = (γ+1) (γ3+γ2+1) (γ3+γ+1) = Φ1(γ) Φ7(γ), 
the ring R admits transform of lengths at most two but if the 
ring R' = Ζ2[γ]/(Φ7(γ)), we get a 7-point DFT satisfying the 
convolution property over the ring R'. Beside that one needs 
a Φ7(γ) reduction while working in R' which is obviously 
harder than the arithmetic in R. However, since R' is a 
subring of R, all calculations can be carried over R with a 
final Φ7(γ) reduction whenever necessary. 

Remark 2: While embedding the input data to the PT 
domain, the size of the subring should be considered rather 
than the size of R. In fact, the most interesting PTs are the 
ones which enlarge the lengths with minimal shrinkage.  

In Table 1, we present parameters for some suitable 
pseudo transform rings. One can extend the table to an 
arbitrary g(γ) using Theorem 1 meeting the marginal needs 
of a particular application.  

TABLE I.  SUITABLE POLYNOMIAL RINGS FOR AN ODD PRIME D 

Ring ω length 
(zd+1)/(z+1),(z2d+1)/(z2+1) z d 

)1)(1(),1/()1( 22 22

++++ dddd zzzz  z d2 

B. Finite Field Spectrums  
If g(γ) is irreducible (i.e. the factor ring is a finite field), 

various arithmetic simplifications can be considered. As 
binary extension fields can be seen as n-dimensional vector 
spaces over GF(2): if α1, α2 …, αn is taken as basis set, each 
element of GF(2n) can be represented as a linear combination 
of the elements of this basis set. Among various bases, there 
are two special types having particular importance. The first 
one is the canonical polynomial basis {1,α,α2, …, αn-1}, 
made up of powers of a defining (mostly primitive) element 
α of GF(2n). The second one is the normal basis of the form 

}  , , , {N
1−

…=
nqq ααα  consists of a normal element α ∈ 

GF(qn) and its conjugates with respect to GF(2).  
For every finite field there exists a normal basis, in fact, 

several such bases may exist for the same field. Those bases 
having the minimal complexity are called optimal normal 
bases (ONB). For our purposes type I ONBs have the utmost 
importance in which the element α is taken as the principal 
root of unity. Observe that this is the case where the normal 
basis N and the set of roots of unity (i.e. {1, ω, ω2, …, ωn-1}) 
become set equivalent (not necessarily equal as ordered sets). 
Therefore, one can change the basis from normal to 
polynomial basis or vice versa by simply ordering the terms. 
Unfortunately not all the finite fields have type I ONB; 
following proposition gives a condition for their existence. 

Proposition 1: Suppose n+1 is a prime and q is primitive 
in Ζn+1, where q is a prime or prime power. Then the n non-
unit (n+1)th roots of unity are linearly independent and they 
form an ONB of GF(qn) over GF(q). 

Proof: See Vanstone et al [15] □ 
Using the above result, for k = 4, 10 ,12, 18, 28, 36, 52, 

58, 60, …, the binary extension field GF(2k) has type I ONB. 
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In a normal basis representation, squaring a field element 
corresponds to a circular shift operation which is well-suited 
for the realizations of public-key cryptosystems employing 
repeated square and multiply methods. Nevertheless, these 
representations could suffer from the complicated bases 
conversions and field multiplications. Eventually, type I 
ONB are optimal by giving the simplest conversion and 
multiplication realizations. Therefore, they initially favor a 
great interest in realizations of ECC but because of some 
security concerns, the use of elliptic curves over composite 
fields (type I ONB only exist in these extensions) is excluded 
from standards such as ANSI X9.63 [8].  

Remark 3: We tend to choose a field having a type I 
ONB for transform domain. Observe that such a selection is 
implementation related and does not change any ECC 
parameter; hence it never jeopardizes the security of the 
cryptosystem.  

IV. APPLICATIONS AND FURTHER IMPROVEMENTS  
Parameter selection is quite important for possible ECC 
realizations and related improvements. 

A. Parameter Selection for ECC over Binary Fields   
The size of the underlying structure (also defines the key 

length) is a common security measure for public-key 
cryptosystems. Standard documents [8] and [16] recommend 
special curves serving different needs of security levels. 
Referencing to the key sizes of these curves, in Table II, we 
tabulate some suitable polynomial rings that admit suitable 
DFT structures. Note that the first column gives the 
maximum degree of the defining polynomials, an appropriate 
less degree polynomial can be used with this selection. For 
instance, the arithmetic in the prime extension field GF(2163) 
can be performed using the polynomial transform over 
g(γ)=(γ37+1)/(γ+1). Notice also that unlike SMM, when SMP 
is used for ECC, the word size becomes u ≈ v/4 as a result of 
successive SMP usage. The readers are referred to [4] for a 
modification giving a better u value (u ≈ v/2) which is not 
included here because of the space limitations. 

TABLE II.  STANDARD PARAMETER SELECTION FOR SMP 

degree 
k ‡ 

PT ring 
g(γ) 

DFT 
d 

Root 
ω 

word 
size u 

words 
s 

171 (γ37+1)/(γ+1)† 37 γ 9 19 
210 (γ41+1)/(γ+1) 41 γ 10 21 
242 (γ43+1)/(γ+1) 43 γ 11 22 
288 (γ47+1)/(γ+1) 47 γ 12 24 
450 (γ59+1)/(γ+1) † 59 γ 15 30 
578 (γ67+1)/(γ+1) † 67 γ 17 34 

‡ shows the maximum degree of the defining polynomial, an appropriate less degree polynomial can 
be used with this selection and † shows the domains having type I ONB  

V. CONCLUSION  
Our motivation was obtaining a finite field multiplier 

fully working in the spectrum in order to use the convolution 
property successively for operations involving several field 
multiplications. In order to meet this goal, using the linearity 
and shifting property of DFT, we define a spectral 

polynomial reduction method. Based on this reduction we 
describe a binary extension field multiplier in the spectrum.  

One essential point of this utilization was to find some 
suitable DFT domains having long transform lengths. We 
give a solution to this problem by defining DFT over 
polynomial rings. After carefully studying the simplest 
possible Fourier rings, we propose to use pseudo polynomial 
transforms over rings defined by binomials.   

Working fully on the spectrum results in a favorable 
condition that it provides highly parallel modular arithmetic 
for both hardware and software realizations of public-key 
cryptosystems involving modular arithmetic. 
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