
Reconfigurable Number Theoretic Transform
Architectures for Cryptographic Applications

Gavin Xiaoxu Yao#1, Ray C.C. Cheung#2, Çetin Kaya Koç∗3, Kim Fung Man#2

Department of Electronic Engineering, City University of Hong Kong
Tat Chee Avenue, Kowloon, Hong Kong SAR

1 gavin.yao@student.cityu.edu.hk
2 {r.cheung,eekman}@cityu.edu.hk

∗ Istanbul Şehir University & University of California, Santa Barbara
3 koc@cs.ucsb.edu

Abstract—As an important component of Spectral Modular
Arithmetic (SMA) cryptographic co-processor, the efficient ar-
chitectures of Number Theoretic Transforms (NTTs) on FPGA
are discussed in this paper. We analyze characteristics of the
NTTs for cryptographic applications, compare different arith-
metic approaches, introduce an optimized solution for FPGA
implementation, and developed several different architectures.
Qualitative and quantitative analyses are provided to showthe
effectiveness of our proposed architectures.

I. I NTRODUCTION

Long integer modular multiplications are used intensively
in many public-key cryptographic algorithms, such as RSA.
The Montgomery modular multiplication algorithm [1] is the
most widely deployed for its efficiency. However, the fully
paralleled Montgomery method will quadruple the hardware
size when the operand size doubles [2]. To avoid such rapid
hardware growth, Spectral Modular Arithmetic (SMA) al-
gorithms are proposed and claimed that the hardware size
for such algorithm is linearly proportional to the operand
size [3], [4], [5]. The SMA requires transforming the data to
frequency domain by Number Theoretic Transform (NTT) at
the preprocessing stage, and transforming back to time domain
by Inverse NTT (INTT) in post processing.

The FFT architectures for NTT were proposed more than
three decades ago [6], and extensively found for DSP appli-
cations in the literature [7], [8], [9]. However, the existing
methods are not suitable of cryptographic applications. DSP
applications employs real or complex arithmetic (as approx-
imated by floating- and fixed-point arithmetic), while cryp-
tographic applications require precise operations on integers
or polynomials. Besides, the moduli in SMA algorithms is
selected to be of the form(2n±1), so that modular operations
can be achieved in a fast fashion with little area. Hence, a
tailored fast NTT architecture of SMA is desired.

On the other hand, scalability and reconfigurability are two
desired characteristics in cryptographic applications. One of
the reasons is that as the cryptanalysis gets more sophisticated,
larger key lengths will have to be employed [10]. For instance,
the security level of 1024-bit RSA is currently questioned,
and 2048-bit RSA is recommended [11]. The RSA hardware
module we use today may not meet the requirements in the fu-

Fig. 1. The architecture of SMA processor and data flow

ture, and the design should be scalable and reconfigurable for
the long-term concern. In addition, different design situations
compile independent specifications. The mobile device may
require little area and power efficiency, while a dedicated RSA
coprocessor will require high throughput. Therefore, various
architectures targeting different purposes should be developed
for different design requirements.

Therefore, reconfigurable architectures of fast NTT for
SMA are proposed in this work. The main contributions of
this paper are as follows:

• Arithmetic of modulo2n± 1 operations is examined and
optimized for FPGA implementation.

• Combinational, pipe-lined and area-compressed architec-
tures for NTT are proposed in the scalable fashion using a
design generator for different purposes and specifications.

• The complexity of the architectures is analyzed and
FPGA implementations validate our analysis.

The rest of this paper is organized as follows. Section II
introduces the background. Section III analyzes the arithmetic
of basic operations. Section IV develops different architectures
of NTT module. Section V provides the FPGA implementation
results and analyses. Finally, Section VI concludes this paper.

II. BACKGROUND

Multiplication of two integers can be calculated by the
convolution of the polynomials if the integers are represented
as the coefficient of the polynomials. The convolution is equiv-
alent to the pair-wise multiplication in the transformed domain,
which is less computational intensive if the transform process
is not considered. In order to take the computational advantage
of transformed domain, Spectral Modular Arithmetic (SMA) is
developed. The signal flow of such SMA are shown in Fig. 1.
The initial step is NTT, which transforms the polynomial to

the spectral representation, and the final step is INTT, which
transforms the spectral representation back to the time domain.
As our main concern in this work is about NTT and INTT the
details about other part of SMAs are not introduced here.

The definition of NTT and INTT is provided here without
further elaboration on the existence of inverse transform:

Definition 1: Let ω be a principald-th root of unity inZq

and {xm} be a length-d sequence of elements ofZq. Then
thed-degreenumber theoretic transform{xi} to {Xi} and its
inverse transformis defined as:

Xi :=
d−1∑

j=0

xjω
ij mod q, i = 0, 1, ..., d− 1 (1)

xi := d−1

d−1∑

j=0

Xjω
−ij mod q, i = 0, 1, ..., d− 1 (2)

From the computational perspective, the ringsq of the form
2n±1 or (2n±1)/p, with principal root a power of 2, are most
suitable because the arithmetic is simplified (see Sec. III). The
rings of the form(2n ± 1) are called the Fermat/Mersenne
rings, and ones of the form(2n ± 1)/p are called pseudo
Fermat/Mersenne number. NTTs over these rings are also
called the Mersenne Number Transform (MNT), the Fermat
Number Transform (FNT), and Pseudo Number Transform
(PNT) (specifically PFNT and PMNT) respectively.

FFT for NTT was proposed by Pollard [6]. Unlike the FFT
in complex-number setting, it is always precise for FFT in a
finite ring, group, or field, because the principal root of unity
is infinite precise and there is no round-off errors. Compared
to the matrix-vector product to compute NTT, the total number
of operations of FFT is reduced toO(d · log d) from O(d2).
Furthermore, the multiplication can be achieved by simple
shift as the principal root of unity is of the form2e. Hence,
an even faster NTT can be achieved.

III. B ASIC ALGORITHMS

Reduction.The modq = (2n±1) reduction of a numberA
can be simply computed by an addition or subtraction as (3)
if A is at most2n-bit wide [12].

A mod (2n±1) = (A mod 2n∓⌊A/2n⌋) mod (2n±1) (3)
We take(2n − 1) as another representation of 0 for mod

(2n− 1) operation, and the computation of modq = (2n± 1)
reduction can be expressed as Algorithm 1, where twon-
bit adders are required. For FPGA, such algorithm utilizes
2n LUTs. If Line 1 yields underflow/overflow, it needs a
correction as in Line 2. For PNT, modq/p reduction is needed.
A is first multiplied byp, then Algorithm 1 is performed, then
the intermediate result is divided byp to get the final result.

Algorithm 1 Mod q = (2n ± 1) reduction

1: (cout, temp) = A mod 2n ∓ ⌊A/2n⌋
2: A mod (2n − 1) = temp+ cout

Addition/Subtraction. The mod (2n − 1) addition and
reduction is given as Algorithm 2, which utilizes 2n-bit adders

Algorithm 2 Mod q = (2n − 1) Addition/Subtraction

1: (cout, temp) = A±B
2: (A±B) mod (2n − 1) = temp± cout

TABLE I
AREA COST OF MODULAR ADDITION AND SUBTRACTION ALGORITHMS

FOR FPGA IMPLEMENTATION

Algorithm
Number of LUTs

Our work Diminished-1 Prefix

FNT

Add 2.2n 2n+ 1 (n · log2 n)/4 + 2.5n
Sub 2n+ 2 2.2n (n · log2 n)/4 + 2.5n
Pre. - n -
Post. - 1.2n -

MNT
Add 2n - (n · log2 n)/4 + 2.5n
Sub 2n - (n · log2 n)/4 + 2.5n
Post. 1.2n - n

and therefore consumes2n LUTs for FPGA implementation.
Correction for over/underflow is performed in Line 2.

The mod(2n +1) addition/subtraction is performed by Al-
gorithm 3 and Algorithm 4 respectively. Algorithm 3 employs
2 n-bit adders and a zero-comparator, which consumes2.2n
LUTs, while Algorithm 4 utilizes 2(n + 1)-bit adders, i.e.
2n+2 LUTs. These two algorithms employ two carry bits to
distinguish the special caseA±B = 2n from over/underflow.

Algorithm 3 Mod q = (2n + 1) Addition

1: (cout0, cout1, temp) = A+B
2: flag0 = ORn−1

i=0 tempi

3: flag1 = flag0 · (cout0 ⊕ cout1)
4: flag2 = cout0 + flag0 · cout0 · cout1
5: (A+B) mod (2n + 1) = (flag1, temp)− flag2

Algorithm 4 Mod q = (2n + 1) Subtraction

1: (cout0, cout1, temp1) = A−B
2: temp2 = temp1 + (cout0 · cout1)
3: (A−B) mod (2n + 1) = temp2 + cout0 · cout1 · 2

n

There are also other ways to implement modular addition
2n± 1 in literature [12]. The most representative methods are
parallel prefix adder and diminished-1 number system. Such
architectures are designed for ASIC but not suitable for FPGA
implementation. The comparison of different algorithms of
modular addition and subtraction for FPGA implementation
is given by Table I.

Multiplication. As ω is a power of2, the most suitable way
to implement modular multiplication is to shift and reduce.
For a constant multiplicand, the shift is just route and does
not utilize logic device. For a multiplier that can multiply
several values, a shifter is needed with additional2n LUTs
for reduction process. Furthermore, the simplicity of operation
on ring 2n − 1 results that add/sub and multiplication by
constant can be integrated, which result that the add/sub-
multiply-reduce module only takes2n LUTs.

Division. Division by constant is employed when perform-
ing PNT. An efficient division can be achieved if there exists
certainβ such thatβ · p = 2σ − 1, whereσ is a nonnegative

Input

Output

0

1

2

3

C
rit

ic
al

 P
a
th

 o
f

M
N

T
,

P
M

N
T

C
ri
tic

a
l
P

at
h

o
f
F

N
T

,
P

F
N

T

Fig. 2. Fixed architecture of a16-degree NTT

integer. The formula is as Eq (4) [13] and performed by
Algorithm 5, which involves(⌈log2(n/σ)⌉+1) ⌈n+σ−log2 p⌉-
bit adders, a constant multiplier, and a zero-comparator.

1

p
=

β

2σ − 1
=

β

2σ(1− 2−σ)

=
β

2σ
(1 + 2−σ)(1 + 2−2σ)(1 + 2−4σ)... (4)

Algorithm 5 Compute B=A/p
1: z ← A · β
2: for i = 0 : ⌈log2(n/σ)⌉ − 1 do

3: z ← z + 2−2iσ · z
4: end for
5: z ← z/(2σ)
6: B ← z+ ORn−1

i=0 zi

IV. PROPOSEDNTT ARCHITECTUREDESIGNS

Combinational Design.The position of each operation is
fixed for a combinational design. The multiplication achieved
by constant shift is just route and takes no logic device. The
logic utilization mainly contributes to the modular addition,
subtraction and reduction. Fig. 2 shows the architecture ofa
16-degree FFT for NTT. Symbol� or � represents modular
addition, ◦ or • represents modular subtraction, and� or
• also denotes the modular reduction following the addition
or subtraction. For MNT/PMNT, the addition is simpler than
subtraction, hence, consumes less time, and the multiply-
reduce module is integrated with the addition/subtraction,
whose latency can be ignored. Therefore, the critical path
goes through the most subtractors as thedotted linein Fig. 2.
For FNT/PFNT, the add operation takes more time because
zero-comparator and reducer are involved as well as twon-bit
adders. Hence, the critical path is thebold line, which goes
through reduction and addition operations. For PNT, the pre-
and post-processing is also required and consumes more time.

The area complexity of combinational design is given by
Table II according to Algorithm 2-4. The time complexity
analysis is omitted due to paper length. Readers can perform
the analysis according to the following truth. For the FPGA
we use, the latency of ann-bit adder is(c + ξn), wherec is

Fig. 3. Constant geometry FFT architecture and area-compressed Design

TABLE III
QUALITATIVE COMPARISON OF DIFFERENT ARCHITECTURES

Combinational Pipelined Area-compressed
Area Light High High Low
Delay Little Light Medium Medium

Throughput Medium High Light Medium
ratio Low High Medium

a constant andξ is the carry propagation rate. The latency of
zero-comparator is⌈log6 n⌉ as 6-input LUTs is deployed. The
time complexity of combinational design can be estimated by
sum all the latency of the operators on the critical path.

Pipelined Design.We can also utilize the flip-flops inside an
FPGA slice by constructing a pipelined architecture. The area
complexity of the pipelined design is almost the same as thatof
combinational design, as it mainly utilized the FFs in the slices
whose LUTs are already occupied. The total latency would
increase due to the clock signal needs time margin to establish
for the robust design. However, the more stages, the higher
throughput. Therefore, pipelined design is more efficient than
combinational one with almost the same area.

Area-compressed Design.The area of the above designs
yields the complexity ofO(nd log2 d). Such area consumption
is unaffordable for limited area scenario. Therefore, the area-
compressed design is proposed based on the constant geometry
FFT which has the same signal path between layers as Fig. 3.
We store the signal after the computation, and refresh the reg-
isters each clock cycle. Therefore, the ideal area compression
ratio is1/ log2 d. However, the shift bias is no longer constant
for multiplication, and the shifter not only costs LUTs, but
also makes the operation integration impossible. The shiftbias
varies during processing, hence, the counter and additional
control unit are involved. The area is about two times that of
a layer of the combinational design, and longer time is taken
to complete the computation as the shifter costs addition time
as well. The qualitative comparison of different architectures
are provided by Table III.

V. FPGA IMPLEMENTATION

The FPGA we used is the Xilinx XC5VLX110T and the
synthesis tool is Xilinx ISE 11.4 with the default constraints
setting. The parameters in Table IV is used as examples to
compare different arithmetic and architecture.

The FPGA implementation of combinational design for the
examples shows the correctness of our complexity analyses as

TABLE II
AREA COMPLEXITY ANALYSIS OF COMBINATIONAL DESIGN

Operation unit Modular Modular Modular Pre- Post- Total Number
Addition Subtraction Reduction processing processing

Number of units (d log2 d)/2 (d log2 d)/2 (d log2 d)/2-d+1 d d -

#LUTs

MNT Per unit 2n 2n - - 1.2n
2nd(log2 d+0.6)Sum nd log2 d nd log2 d - - 1.2nd

FNT
Per unit 2.2n 2n+ 2 2n - -

(3.1n+1)d log2 d-2nd+2nSum 1.1nd log2 d (n+1)d log2 d nd(log2 d-2)+2n - -

PMNT
Per unit 2n 2n - n · (▽p-1) a D+1.2n b

nd(2 log2 d+▽p+0.2)+DdSum nd log2 d nd log2 d - nd · (▽p-1) Dd+1.2nd

PFNT Per unit 2.2n 2n+ 2 2n n · (▽p-1) D+0.2n (3.1n+1)d log2 d+
Sum 1.1nd log2 d (n+1)d log2 d nd(log2 d-2)+2n nd · (▽p-1) Dd+0.2nd (▽p-2.8)nd+2n+Dd

a ▽A denotes the hamming weight ofA b D=(▽β+⌈log2(n/σ)⌉) · (⌈n+σ-log2 p⌉)

TABLE IV
THE SYMBOLS AND THE PARAMETERS OF THE EXAMPLES

Sym Meaning
Parameters of the examples
FNT MNT PNT

q Ring size ofZq 220+1 219-1 222+1
n The index number ofq 20 19 22
ω The principal root of unity 32 2 4

TABLE V
FPGA IMPLEMENTATION RESULT OF COMBINATIONAL DESIGN

Implementation Theoretical Deviation
result value

Number of
LUTs

FNT 1258 1232 +2.1%
MNT 2752 2796 -1.6%
PNT 6099 6111 -0.2%

Critical path
delay (ns)

FNT 25.278 25.3012 -0.09%
MNT 20.726 20.6516 +0.36%
PNT 41.454 41.4514 +0.26%

given by Table V. All the implementation results are very close
to the theoretical value from Table II and the time complexity
estimation. The comparison of different architectures forthe
MNT example shown as Table VI consists with the qualitative
analysis in Table III. It shows the area-compressed design is
the most area-friendly, the combinational design has the least
latency, and the pipelined design has the highest throughput
and the highest throughput/slice ratio, which means it is
also the most economy design. We also implement pipelined
architecture and area-compressed architecture, which allyield
results very close to the value from our analytical model. The
details are not included due to the space limit.

VI. CONCLUSIONS

Spectral Modular Arithmetic (SMA) algorithms maybe the
solutions to the resource-intensiveness of public-key cryptog-
raphy. As an important processing step of SMA, the family of
various Number Theoretic Transforms (NTTs) are presented.
The characteristics of NTT for cryptographic applications
are analyzed, and the algorithms are optimized for field-
programmable technology. In order to meet various specifica-
tions, different architectures are proposed and their complexity
is examined. The analytical model is given for efficient timing
and area estimate. FPGA implementations are described to
analyze the designs qualitatively and quantitatively.

TABLE VI
FPGA IMPLEMENTATION RESULTS OF DIFFERENT ARCHITECTURES

Combi- 2-stage 4-stage Area-
national Pipelined Pipelined compressed

Number of registers 0 608 1216 311
LUTs 2752 2752 2752 1494
slices 688 760 764 376

0 320 912 299
utilization 0 10% 29% 19%

Minimum Period (ns) - 7.531 4.088 8.115
Time offset (ns) - 14.184 10.741 16.321

(ns) 20.726 21.751 23.005 40.666
(Mbps) 14667 40366 74364 9365

Throughput/slice 21.32 53.11 97.33 24.91

REFERENCES

[1] P. L. Montgomery, “Modular multiplication without trial division,”
Mathematics of Computation, vol. 44, no. 170, pp. 519–521, 1985.

[2] Ç. K. Koç, T. Acar, and J. Kaliski, B.S., “Analyzing andcomparing
Montgomery multiplication algorithms,”Micro, IEEE, vol. 16, no. 3,
pp. 26 –33, jun 1996.

[3] G. Saldamh, “Spectral modular arithmetic,” Ph.D. dissertation, Oregon
State University, May 2005.

[4] G. Saldamli and Ç. K. Koç, “Spectral modular exponentiation,” in
Computer Arithmetic, 2007. ARITH ’07. 18th IEEE Symposium on, 25-
27 2007, pp. 123 –132.

[5] S. Baktir, “Frequency domain finite field arithmetic for elliptic curve
cryptography,” Ph.D. dissertation, Worcester Polytechnic Institute, 2008.

[6] J. M. Pollard, “The fast Fourier transform in a finite field,” Mathematics
of Computation, vol. 25, no. 114, pp. 365–374, 1971.

[7] R. Agarwal and C. Burrus, “Fast convolution using Fermatnumber
transforms with applications to digital filtering,”Acoustics, Speech and
Signal Processing, IEEE Transactions on, vol. 22, no. 2, pp. 87 – 97,
apr 1974.

[8] S. Xu, L. Dai, and S. Lee, “Autocorrelation analysis of speech signals
using Fermat number transform (FNT),”Signal Processing, IEEE Trans-
actions on, vol. 40, no. 8, pp. 1910 –1914, aug 1992.

[9] T. Toivonen and J. Heikkila, “Video filtering with Fermatnumber
theoretic transforms using residue number system,”Circuits and Systems
for Video Technology, IEEE Transactions on, vol. 16, no. 1, pp. 92 –
101, jan. 2006.

[10] D. Giry. (2010) Cryptographic key length recommendation. [Online].
Available: http://www.keylength.com/

[11] R. Silverman. (2002, Apr.) Has the RSA algorithm been
compromised as a result of Bernstein’s paper? [Online]. Available:
http://www.rsa.com/rsalabs/node.asp?id=2007

[12] R. Zimmermann, “Efficient VLSI implementation of modulo (2n ± 1)
addition and multiplication,” inComputer Arithmetic, 1999. Proceed-
ings. 14th IEEE Symposium on, 1999, pp. 158 –167.

[13] B. Parhami,Computer Arithmetic: Algorithms and Hardware Designs.
New York, USA: Oxford University Press, 2010.

