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ABSTRACT

Communications systems are increasingly reliant on system-
on-chip (SoC) solutions. As the complexity and size of SoCs
continues to grow, so does the risk of “Trojan” attacks,
in which an integrated circuit (IC) design is surreptitiously
and maliciously altered at some point during the design or
manufacturing process. Despite the risks that such an attack
entail, relatively little attention has been given in the literature
to methods enabling detection of and response to run-time
Trojan attacks. In the present paper, we present a Trojan-
resistant system bus architecture suitable across a wide range
of SoC bus architectures. The system bus detects malicious bus
behaviors associated Trojan hardware, protects the system and
system bus from them and reports the malicious behaviors to
the system CPU. We show that use of this bus and associated
embedded software is highly effective in greatly reducing IC
Trojan vulnerabilities without loss of bus performance.

INTRODUCTION

Silicon systems in general and communications system-
on-chips (SoCs) in particular are getting exponentially more
complex, harder to test, and interdependent. Such systems
increasingly involve third party IP blocks and are increasingly
reliant on outsourced and/or offshore aspects in the design and
manufacturing process. With more and more of the system
design steps occurring in environments where it is difficult to
ensure the security of the design, there is a growing threat of
“Trojan” attacks, in which an integrated circuit (IC) design is
surreptitiously and maliciously altered at some point during
the design or manufacturing process

While the threat of Trojan ICs has received increasing
attention in recent years, most anti-Trojan efforts are
directed at identifying Trojans during verification and
testing, prior to silicon deployment. For example, there is a
class of techniques based on comparing measured physical
characteristics such as power consumption, timing variations,
and layout structures with respect to a “golden model”
deemed to be trustworthy [1]–[9]. There are also attempts
to design “malicious hardware” in order to demonstrate
how significant large-scale attacks can be mounted by the
help of hardware [10]. Other methods rely on adding logic
which is used to identify authentic chips or test original
designs to identify functional defects that may have malicious
origins [11], [12]. These approaches, while they are an

important part of an overall mitigation strategy, are far from
comprehensive in SoC(System on Chip) and SiP(System in
Package) applications.

For example, when third party IP blocks are provided
using register transfer level (RTL) descriptions, it is likely
that there will be no trusted golden model to use for
comparison. In addition, the use of increasingly complicated
SoC (System on Chip), SiP (System in Package) and MCP
(Multi-chip-package) designs provides a would-be attacker
with multiple opportunities for the insertion of Trojans,
including front-end logic design, place-and-route, floor
planning, mask creation, large scale manufacturing, and
packaging. Even if all the constituent IP blocks and chips are
known to be trustworthy, an attacker could insert a malicious
die during the manufacturing process. In this context, it is
very difficult to reliably create a trustworthy system-level
model against which production samples can be compared.
In addition, traditional approaches would not be particularly
effective at identifying a true Trojan – an attack designed to
remain hidden and inactive until triggered either internally or
externally.

While there are many aspects of an SoC that could be
targeted by a would-be attacker, in the present paper we
consider the specific issue of bus arbitration at the presence
of Trojan attacks, which is obviously critical to the overall
system operation. The bus arbitration process represents one
of the most significant points of vulnerability to run-time
Trojans because it is the step that allows master devices (such
as processor, different DMA for different communication
blocks, various I/O interface blocks) to have access to
slave devices (memory controllers, UART, timers, etc.).
Once a device is granted mastership of the bus, it can
retain this mastership for as long as desired. In systems in
which the master devices are behaving cooperatively this
is not a problem. However, a Trojan attacker could cause
a master device to maintain lock on the bus for arbitrarily
long periods of time. The system could continue in the
power-on state, but would be locked and unable to function
normally. We present a bus architecture that can be used
to detect the Trojan attacks and protect systems from the
real-time Trojan attacks without affecting on bus performance.

To the best of our knowledge, these aspects of IC Trojan



protection have not been addressed before. Particularly, this is
the first paper that deals with 1) real-time Trojan attacks and
real-time protections against such attacks, 2) system protection
via a Trojan-resistant SoC bus architecture. Our proposed
architecture accomplishes protection without incurring high
costs on the bus resources and performance. The remainder
of this paper is organized as follows. We first provide a brief
overview of a conventional SoC bus. Next, the proposed SoC
system bus architecture and its design goals are described.
Next, we present a detailed description of the key techniques
that underlie the proposed SoC bus architecture in the context
of the AMBA bus architecture. Finally, we present an interrupt
handling method to receive information about Trojan behaviors
to exclude the Trojan IP from system by cutting the connection
between system bus and IP.

PROPOSED BUS ARCHITECTURE

Normal SoC Bus Structure and Operation

While an SoC bus is not a real physical bus, it performs the
functions associated with a physical bus of interconnecting a
processing core to the surrounding interface logic. Examples
of SoC buses include AMBA (Advanced Micro-controller
Bus Architecture) from ARM, CoreConnect from IBM,
Avalon Bus Specification from Altera, Wishbone from
Opencores, and STBus from STMicroelectronics [13]–[17]
While each bus is characterized by different architectures,
performances, advantages and protocols, they address the
similar function of mediating bus mastership in multiple
bus master environments. This involves translating incoming
addresses from a current master into selection signals to slave
IPs, transferring data from a selected slave IP to a current
master, bridging between multiple bus levels. Fig. 1 shows a
conventional bus arbiter connected, in this example, to three
master devices and three slave devices. A device desiring
bus mastership can issue a request using its Mastership REQ
line. If mastership is granted, the arbiter will inform the
requesting device using the appropriate GRANT line, and
simultaneously, will set MASTER ID so that the multiplexors
will allow signals from the selected master to be provided to
the slave devices. Each master also has an LOCK signal that
it can optionally assert when it needs to lock the bus. Such a
need can arise, for example, when there is a time constraint
that forces the master device to complete a task (such as
transferring a received packet to main memory) immediately.
When the bus is locked, the arbiter informs the other potential
master devices using the MASTER LOCK signal. In cases
where the master is performing a less time-critical task, such
as when the CPU is fetching an instruction from memory,
the CPU will typically not assert LOCK. This allows the
arbiter to take mastership away from the CPU and grant it to
a different device, such as a modem, should a time-critical
task arise.

In a normally operating system, mastership passes among
different devices in accordance with the arrival of data and
the various demands and priorities of the master devices. In
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Fig. 1. A high-level view of conventional SoC bus interconnections,
showing master and slave devices, an arbiter, an address decoder, and various
multiplexers.
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Fig. 2. A conventional address decoder and its connection. The decoder
examines the MSBs of the address and selects the appropriate slave

a Trojan attack, however, a malicious master could request
and receive bus mastership, and then proceed to lock the bus
for an indefinite period of time. Once in control of the bus,
it could halt the system by blocking the CPU from fetching
code instructions and loading data. In addition, it could access
normally restricted system addresses in order to gain access
to confidential and control system operating modes.

Address decoder

The function of an address decoder is to receive address
signals arriving from a master and to make a selection of an
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Fig. 3. The proposed secure address decoder

appropriate slave device. Fig. 2 shows an example of the con-
ventional (in this case based on AMBA) address and address
decoding connections. The decoder logic contains combina-
torial logic to examine the most significant bits (MSBs) of
the address and activate the corresponding slave block. For
example, if the MSBs indicate an address corresponding to
Slave #1, the address decoder will set the SLAVE SEL1 signal
appropriately so that the LSBs will be used to read data from
Slave #1.

Fig. 3 shows a secure address decoder containing a
conventional address decoder as well as additional logic to
1) detect an attempt by a malicious bus master to access
a restricted address, and 2) block normal masters from
inadvertently accessing malicious slaves. The “Restricted
Address Start Register” and “Restricted Address End
Register” contain address values to define restricted address
ranges. The embedded software configures these values in
an initialization step or dynamically re-configures them in
run-time. The comparator receives address signals from the
master, compares them with the restricted address register, and
upon detection of an unauthorized access attempt generates
an “Unauthorized Access Detection” signal that disables all
the slave select signals except for a single default slave. The
Unauthorized Access Detection signal is also connected to
the interrupt controller as an interrupt source so that CPU can
handle the malicious behavior accordingly. The CPU initiates
an interrupt service routine to identify information about
the malicious master and the unauthorized access address,
and initiates an appropriate countermeasure. In addition, the
identity of the malicious master is stored in the malicious
master mask register so that future attempts to obtain bus
mastership can be handled accordingly.

The secure address decoder also blocks access by normal
masters to malicious slaves. A malicious slave could attempt
to halt bus operation through continuously asserting a wait.
This behavior can be detected using the bus matrix block,
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and information regarding the malicious slave information
recorded into the malicious slave mask register. The Trojan
slave mask value disables bus connection to the Trojan slave
mask. When a master attempts to access a malicious slave, the
address decoder instead diverts the access into a default slave
containing empty address ranges, thus effectively excluding
the malicious slave block from the bus system.

Arbiter

As noted earlier, and arbiter is used to ensure that only one
master has access to the bus at a time. The arbiter performs this
function by observing (possibly simultaneous) bus-mastership
requests to use the bus, deciding which requester has the
highest priority, and granting mastership to one master at
at times. There are multiple approaches for bus arbitration,
including round-robin, fixed priority, or a combination of
round-robin and fixed priority. Fig. 4 shows the grant signals
and address multiplexor connections of a conventional bus
standard. Upon receiving a grant signal from the arbiter,
the selected master can then provide an address via the
multiplexor to the appropriate slave. The arbiter also provides
and MASTER ID signals to the multiplexor to ensure the
ADDR information from the selected master is provided to
the slaves.

Fig. 5 shows the proposed arbiter. The arbiter contains a
register, counter and combinatorial logic and performs the
functions of 1) detecting and nullifying malicious bus locking
by a Trojan master, and 2) avoiding grants of bus mastership
to known Trojan masters.

In principle, the bus master lock is used to protect data
integrity when a master needs to perform a time-constrained
transfer through the bus. However, a Trojan master could
obtain exclusive possession of the bus mastership through
improper use of the LOCK bus signal. This would exclude
other masters from gaining access to the bus, and would also
prevent an interrupt from being used to switch bus mastership.
To address this, several logic functions are included in the
arbiter of Fig. 5. A counter counts the number of clocks for
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Fig. 5. The proposed arbiter.

which LOCK signals are active during each use of the bus by
a master. When the counter exceeds a threshold, a malicious
bus lock signal is activated. The threshold can be set on an
application-specific basis, and can also be varied adaptively
during operation as a function of specific SoC conditions, thus
minimizing the probability of a false alarm. Upon activation
of the malicious bus lock signal, the master mask register
forcibly gates the lock and request signals and the arbiter
returns to normal operation. The arbiter of Fig. 5 also receives
the Unauthorized Access Detection signal from the address
decoder as explained above. The arbiter saves the MASTER
ID of the malicious Master into the master mask register, so
that future attempts by this master to access the bus can be
denied.

Bus matrix

Fig. 6 shows a secure bus matrix. In normally operating
system, the bus matrix enables the connection between the
appropriate master and slave signals in accordance with the
signals from the arbiter and decoder, passing data, address,
and transaction status. The secure bus matrix detects, blocks,
and reports malicious wait signals from a Trojan slave. When
a slave needs additional time to finish a data writing or reading
operation instructed by the master, it can assert the wait signal
so that the master knows to wait for completion. For example,
if the bus is running at 200Mhz and memory access is clocked
at 50Mhz, the memory controller can assert the wait signal for
four clock cycles when a master needs to read from or write
to memory. A Trojan IC could utilize the wait signal to halt
the system, thus forcing the master to wait indefinitely and
preventing the arbiter from switching mastership. In the bus
matrix shown in Fig. 6, a counter is used to detect a malicious
wait in a manner analogous to the counter described above
for detecting malicious bus lock. When the wait exceeds a
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Fig. 7. Interrupt controller, modified to handle signals identifying the
presence of a Trojan

threshold, a malicious wait signal is generated and used to
nullify the wait signal, and also used as a latch enable signal
for the slave mask register to identify the current slave as
malicious.

POST-DETECTION SOC OPERATION

The approaches described above enable detection of Trojan
behavior and temporary or permanent quarantining of master
or slave devices known to be malicious. However, if the act of
excluding a malicious master or slave leaves the SoC unable
to function, the Trojan attack will still have succeeding in
halting the system. Thus, it is important to not only quarantine
malicious devices, but to maximize the ability of the SoC
to continue operation despite the presence of a Trojan. The
appropriate response depends strongly on the specific nature
of the Trojan.

In addition to their use in blocking malicious blocks,
the “Unauthorized Access Detection”, “Malicious Bus Lock
Detection” and “Malicious wait Detection” signals can also
be used in conjunction with the system interrupt. Fig. 7 shows
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TABLE I
AREA DISTRIBUTION OF THE EXAMPLE SOC.

Area Soft/hard macros Pads Standard cells Total Chip size

(mm2) 14.028 2.736 6.631 29.89

a simplified interrupt controller which connects the detection
signals as interrupt sources. When malicious behavior is
detected in one of the proposed bus components, at first, the
behavior is temporary blocked. The corresponding detection
signal triggers a system interrupt, causing the CPU to jump
to a vector address corresponding to an appropriate interrupt
handler routine. In the interrupt handler routine, the CPU
utilizes a specific interrupt service routine corresponding to
the detection signal. Actions taken can include reporting
malicious behaviors to users or host systems.

In addition, or alternatively, the CPU can assert the reset
signal of the Trojan IC block to initialize all registers inside
the block, turn on clock gating on the block to halt the
Trojan block’s operation, or turn on power gating on the
block power down every element of the Trojan block. Fig. 8
shows a block diagram of an SoC with power gating. The
Power Switching Fabric includes a unified VDD mesh for the
Power Gated Functional Block. This isolates the functional
block from power sources using the Power Gating Controller.
When the block goes into power gated status, output signals
of the power gated block must be tied to Vdd or GND.
Otherwise, a block which receives the signals as input signals
may experience problems because of the floating inputs. The
Isol block performs the appropriate signal ties to handle this.

DESIGN EXPERIMENTS

To explore the hardware costs of some of the approaches
described above, the AMBA-based SoC shown in Fig. 9
was used. We have chosen the AMBA AHB from ARM
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Fig. 9. The AMBA-based SoC used for experiments. This SoC contains
approximately 4 million logic gates.

TABLE II
ADDITIONAL GATE COUNT OF THE PROPOSED ARCHITECTURES.

Function Additional gate count

Arbiter 124

Address decoder 116

Bus matrix 186

Data integrity checker for memory 306

Total additional gates 732

because it is a very widely used SoC bus. The SoC in Fig. 9
contains approximately 4 million logic gates and includes
a processor core, SoC bus components, various memory
controllers, various interface blocks, a baseband processor,
timers, interrupt controller, general purpose IO and UART.

The RTL description of the system was synthesized using
a 90 nm technology library. The processing core and system
bus operates at 132Mhz. The number of standard cells used
in this SoC is 574472, and the total number of logic gates
is 4010814. Table I shows the area distribution of the SoC.
Table II shows the additional gate count costs associated
with the various techniques described earlier. As the table
shows, the total increase in gate count is less than 800 for
the specific implementation used here.

It is also important to consider the potential for delays that
may be introduced by this additional logic. For the modified
address decoder, there is a delay due to the three-input
AND gate in addition to the delay of conventional address
decoding. The new arbiter and bus matrix each contain an
additional two-input AND gate with its associated delay.

All of the above delays are negligible in the context of the
overall SoC design. In the overwhelming majority of cases, the
additional delay would not have any impact with regard to the
ability to meet performance constraints. In the unlikely event



Fig. 10. An AMBA-based development card for emulation of the proposed
architectures

that the ability to meet these constraints is impacted, this can
be automatically handled in the synthesis stage through the
use of faster logic gates.

Fig. 10 shows an AMBA-based development emulation card
used for implementation. The anti-Trojan logic elements listed
in Table II were designed in RTL and mapped to this board.
Various virtual attacks were implemented to, for example,
attempt to access restricted address ranges, assert continuous
lock and wait signals during processing. On this emulation
card and in RTL simulation, the detection, mitigation and
system interrupt functions to detect and mitigate these attacks
were successfully verified.

CONCLUSIONS

We have presented a bus architecture that is resilient to
Trojan attacks. By constructing the new bus architecture
around a core of traditional bus elements such as the arbiter,
address decoder, bus matrix, etc., the design remains compati-
ble with traditional systems. Mechanisms have been presented
to identify malicious attempts at bus locking, unauthorized
memory accesses, and malicious use of wait signals which, if
left undetected, could freeze the operation of the entire SoC.
Master and slave devices engaging in malicious behavior are
identified and quarantined. Depending on the nature of the
Trojan attack, the operation of the SoC can be modified on
the fly, thereby enabling the SoC to continue to maintain full
or partial functionality despite the attack.
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