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Abstract

A method for polynomial multiplication over finite fields
using field extensions and polynomial interpolation is intro-
duced. The proposed method uses polynomial interpolation
as Toom-Cook method together with field extensions. Fur-
thermore, the proposed method can be used when Toom-
Cook method cannot be applied directly. Explicit formulae
improving the previous results in many cases are obtained.

1 Introduction

A direct approach to polynomial multiplication is the
schoolbook method. For multiplying two arbitrary 2-term
polynomials, this algorithms requires 4 multiplications.
Karatsuba-Ofman or simply Karatsuba algorithm [6, 7] is
a well-known subquadratic polynomial multiplication algo-
rithm. Karatsuba algorithm decreases the number of mul-
tiplications from 4 multiplications to 3 multiplications for
multiplying two arbitrary 2-term polynomials. Weimer-
skirch and Paar [10] generalized Karatsuba algorithm and
gave a detailed account of its variants. Recently, Mont-
gomery [8] improved some of those results by giving ex-
plicit formulae for multiplying two arbitrary n-term poly-
nomials, where n ∈ {5, 6, 7}. Toom-Cook [9, 4] method is
another related method which gives the best result in many

cases where it can be applied directly. Toom-Cook method
cannot be applied directly for the multiplication of n-term
polynomials over a finite field Fq, if n is sufficiently large
compared to q.
In this paper we give a method for polynomial multipli-

cation over finite fields using field extensions and polyno-
mial interpolation. Our method uses polynomial interpo-
lation as Toom-Cook method, and we also use field exten-
sions. Furthermore, our method works also when Toom-
Cook method cannot be applied directly. We obtain explicit
formulae improving the previous results in many cases. In
some cases over F2 the bounds we obtain are the same with
the recent bounds obtained by Fan and Hasan in [5].
The paper is organized as follows. In the next section

we give some background and describe some well-known
methods of polynomial multiplication. Our method is ex-
plained with illustrative examples in Section 3. We apply
our method to polynomial multiplication over F2 and 10, 11
and 12-term polynomial multiplication bounds are deter-
mined in Section 4. In Section 5 we discuss the efficiency
of the proposed method. We conclude this paper in Section
6.

2 Background

LetR be an arbitrary commutative ring with identity and
R[x] denote the ring of polynomials over R with the inde-
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terminate x. For an integer n ≥ 1, a polynomial of the form

a0 + a1x + · · · + an−1x
n−1 ∈ R[x]

is called an n-term polynomial over R. Throughout the
paper, if not stated otherwise, an n-term polynomial A(x)
means an n-term polynomial with indeterminate x over an
arbitrary commutative ring with identity.
For an integer n ≥ 1, the complexity of polynomial mul-

tiplication for n-term polynomials is the minimum number
M(n) of multiplications needed in order to multiply two
arbitrary n-term polynomials.
Throughout the paper, Fq denotes a finite field with q el-

ements. For a prime power q and an integer n ≥ 1, the
complexity of polynomial multiplication over Fq for n-term
polynomials is the minimum numberMq(n) of multiplica-
tions over Fq needed to multiply two arbitrary n-term poly-
nomials over Fq. We note thatMq(n) ≤ M(n).
We now summarize the schoolbook method, Karatsuba

algorithm and the related generalization by Weimerskirch
and Paar, the recent work by Montgomery, and Toom-Cook
method.

2.1 Schoolbook Method

Consider two n-term polynomials

A(x) =
n−1∑
i=0

aix
i, B(x) =

n−1∑
i=0

bix
i.

The schoolbookmultiplication gives us the productC(x) of
A(x) and B(x) to be

C(x) =
n−1∑
i=0

n−1∑
j=0

aibjx
i+j .

Therefore using this method we get

M(n) ≤ n2. (1)

2.2 Karatsuba Algorithm and
Weimerskirch-Paar Generalization

Karatsuba algorithm [6] gives better upper bounds on
M(n). For example, consider two 2-term polynomials,

A(x) = a0 + a1x, B(x) = b0 + b1x.

Karatsuba algorithm computes the product C(x) =
A(x)B(x) as C(x) = a1b1x

2 + [(a0 + a1)(b0 + b1) −
a0b0 − a1b1]x + a0b0. Here we need just three multiplica-
tions: a0b0, (a0 + a1)(b0 + b1) and a1b1. Hence we ob-
tain M(2) ≤ 3, while the schoolbook method gives only
M(2) ≤ 4.

Weimerskirsh and Paar [10] gave a detailed complexity
analysis of Karatsuba algorithm for different cases. Specif-
ically, if the number of coefficients of polynomials are
composite integers, say nm, then we can write A(x) =∑m−1

s=0 As(x)xns ∈ R[x] where As(x) ∈ R[x] is an n-
term polynomial for each 0 ≤ s ≤ m − 1. Let R = R[x],
which is again a commutative ring with identity. Now,A(x)
can be considered as anm-term polynomial overR, where
each of its coefficients are n-term polynomials overR. Af-
ter writing B(x) in the same way and applying Karatsuba
algorithm, it is found that

M(nm) ≤ M(n)M(m). (2)

If the number of coefficient is n = 2m + 1 where m ≥ 1,
then we can write

A(x) = A0(x) + A1(x)xm, B(x) = B0(x) + B1(x)xm ,

whereA0, B0 are degreem−1 polynomials andA1, B1 are
degreem polynomials. ThenA(x)B(x) = A0B0 + [(A0 +
A1)(B0 +B1)−A1B1−A0B0]xm +A1B1x

2m. Therefore
we arrive to the following bound of [10]:

M(2m + 1) ≤ M(m) + 2M(m + 1) (3)

for odd n = 2m + 1 wherem ≥ 1.

2.3 Montgomery’s Contribution

Montgomery [8] observed, among other things, that one
multiplication is redundant in (3). Hence

M(2m+1) ≤ 2M(m+1)+M(m)−1, (m ≥ 1). (4)

Montgomery also gave explicit formulae for n = 5, 6, 7,
which imply M(5) ≤ 13, M(6) ≤ 17 and M(7) ≤ 22.
Using these formulae for n = 5, 6, 7 recursively, he also
obtained improvements on M(n) for some larger values of
n. These improvements are tabulated in the Table 1 in [8].

2.4 Toom-Cook Method

LetF be an arbitrary field. For n ≥ 1, assume thatF has
at least 2n−2 distinct elements (or “point”s) α1, ..., α2n−2.
Toom-Cook method [9], [4] uses these 2n − 2 distinct el-
ements of F and the point at “∞” in order to compute the
product of two arbitrary n-term polynomials from F . If
there are enough elements in F , then this method needs
(2n − 1) multiplications over F in order to multiply two
arbitrary n-term polynomials over F . We refer to a recent
paper [1, 2] for the details. Hence if q ≥ 2n − 2, then
Toom-Cook method gives

Mq(n) ≤ 2n− 1. (5)
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However if F is a finite field Fq and n is large enough,
this method cannot be applied directly (see also [8, Sub-
section 6.1]). For example, if q = 7 and n = 5, then
as 2n − 2 = 8 > 7 = q, we cannot apply Toom-Cook
method. Among schoolbook method, Karatsuba algorithm
andMontgomery’s improvements, the best result forM7(5)
is M7(5) ≤ 13 (see [8, Table 1]). Note that Toom-Cook
method givesM7(3) = 5 andM7(2) = 3. Therefore using
Toom-Cook method recursively and (4), we obtain that

M7(5) ≤ 2M7(3) + M7(2) − 1 ≤ 2 · 5 + 3 − 1 = 12,

which is better than the upper boundM7(5) ≤ 13 obtained
from Montgomery’s formulae for 5-term polynomials. In
the next section we will improve, for example, this bound
to M7(5) ≤ 11 (see Example 1) and then we will improve
this bound toM7(5) = 10 (see Example 3) which is optimal
and therefore we use equality.

Remark 1 It follows from the definitions that the inequali-
ties on (2) and (4) on M(n) also hold if M(n) is replaced
with Mq(n), where q is a prime power.

3 New Method For Polynomial
Multiplication Over Finite Fields

Let q be a prime power. Using Toom-Cook method we
have

Mq2(n) ≤ 2n − 1 for n ≤ q2+2
2 , and

Mq(n) ≤ 2n − 1 for n ≤ q+2
2 .

Toom-Cook method cannot be applied directly for obtain-
ing an upper bound on Mq(n) if n > q+2

2 . In the begin-
ning of this section, we will show that modifying Toom-
Cook method and using the extension Fq2/Fq, we can ob-
tain new formulae and improved upper bounds on Mq(n)
for n ≤ q2+2

2 . Then, we will generalize our results using
the extensions Fqm/Fq for arbitrary integersm ≥ 2 and ob-
tain new formulae and improved upper bounds on Mq(n)
for larger values of n as well.
The following definition is useful.

Definition 1 Let q be a prime power and m ≥ 2 be an in-
teger. Let μq(m) be the smallest number of multiplications
needed over Fq for multiplying two arbitrary elements of
Fqm . In the definition of μq(m), multiplying two arbitrary
elements of Fq is counted but multiplying an element of Fq

with a constant in Fq is not counted.

Any polynomial multiplication formula over Fq can be
used for finite field multiplication because element of finite
fields can be represented by polynomials. In order to multi-
ply two elements of finite field, the elements are multiplied

like polynomials and then the product is reduced using re-
duction polynomial of the finite field. The reduction step
has no multiplicative cost. So we can assume that we have
μq(n) ≤ Mq(n).

Lemma 1 Let q be a prime power. We have μq(2) ≤ 3.

Proof. Karatsuba algorithm [6] gives the result.
Now we give our first improvement using the extension

Fq2/Fq.

Proposition 1 Let q be a prime power. Assume that q+2
2 <

n ≤ q2+2
2 . There exists a formula for multiplying two arbi-

trary n-term polynomials over Fq which gives

Mq(n) ≤ 6n − 2q − 5. (6)

Proof. Assume that n > q+2
2 . We use Toom-Cook type

evaluations over Fq2 using the point ∞, q elements of Fq

and 2n−q−2 elements from Fq2 \Fq. Here and throughout
the paper, for sets A and B, the notation A \ B denotes the
subset of A excluding the elements of B. These need at
most q + 1 multiplications in Fq due to the point∞ and the
elements of Fq, and at most 2n− q− 2multiplications over
Fq2 due to the chosen 2n−q−2 elements of Fq2 \Fq. Using
Lemma 1 we obtain that

Mq(n) ≤ q + 1 + μq(2)(2n − q − 2) ≤ 6n− 2q − 5.

Remark 2 In the proof of Proposition 1, if we know that
a multiplication corresponding to an evaluation and con-
tributing to the upper bound (6) also appears in another
evaluation, then we call such a multiplication an overlap.
Since the proof of Proposition 1 does not take such overlaps
into account, if we know the existence of such overlaps in a
particular case, then the upper bound (6) can be improved.
In Example 2 we will illustrate such a situation.

In the following example we demonstrate how to find the
formula of Proposition 1 explicitly.

Example 1 Let q = 7 and n = 5. Note that x2 −3 ∈ F7[x]
is irreducible and let w ∈ F49 with w2 = 3. Let a =
a0 + a1 + · · ·+ a4x

4 and b = b0 + b1x+ · · ·+ b4x
4 be two

arbitrary 5-term polynomials over F7. We need to compute
c0, c1, . . . , c8 ∈ F7 such that (a0 + a1x + ... + a4x

4)(b0 +
b1x+ ...+b4x

4) = c0+c1x+ ...+c8x
8.Using the elements

0, 1, . . . , 6 of F7, w ∈ F49 \ F7 and the point∞, we obtain
the following system of 2n − 1 = 9 equations:
x = 0 ⇒ a0b0 = c0

x = 1 ⇒ (a0 + ... + a4)(b0 + ... + b4) = (c0 + ... + c8)
x = 2 ⇒ (a0+...+24a4)(b0+...+24b4) = (c0+...+28c8)
x = 3 ⇒ (a0+...+34a4)(b0+...+34b4) = (c0+...+38c8)
x = 4 ⇒ (a0+...+44a4)(b0+...+44b4) = (c0+...+48c8)
x = 5 ⇒ (a0+...+54a4)(b0+...+54b4) = (c0+...+58c8)
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x = 6 ⇒ (a0+...+64a4)(b0+...+64b4) = (c0+...+68c8)
x = w ⇒ (a0+..+w4a4)(b0+..+w4b4) = (c0+..+w8c8)
x = ∞ ⇒ a4b4 = c8

We use the following notations for the products at the
left hand side of equations above. Note that we reduce the
products with respect to mod 7 and mod (w2 − 3).
D0 = a0b0

D1 = (a0 + a1 + a2 + a3 + a4)(b0 + b1 + b2 + b3 + b4)
D2 = (a0+2a1+4a2+a3+2a4)(b0+2b1+4b2+b3+2b4)
D3 = (a0+3a1+2a2+6a3+4a4)(b0+3b1+2b2+6b3+4b4)
D4 = (a0+4a1+2a2+a3+4a4)(b0+4b1+2b2+b3+4b4)
D5 = (a0+5a1+4a2+6a3+2a4)(b0+5b1+4b2+6b3+2b4)
D6 = (a0 +6a1 +a2 +6a3 +a4)(b0 +6b1 +b2 +6a3 +b4)
D7 = (a0 + 3a2 + 2a4 + (a1 + 3a3)w)(b0 + 3b2 + 2b4 +
(b1 + 3b3)w)
D8 = a4b4.
As it is seen D7 is the only product over F49. If we expand
D7, then we get
D7 = t1t

′
1 + [(t1 + t2)(t′1 + t′2)− t1t

′
1 − t2t

′
2]w + t2t

′
2w

2,
where t1 = (a0 +3a2 +2a4), t′1 = (b0 +3b2 +2b4), t2 =
(a1+3a3), t′2 = (b1 +3b3). Substitutingw2 = 3 we obtain

D7 = D′
7 + D′′

7w,

where D′
7 andD′′

7 are the multiplications over F7 with

D′
7 = t1t

′
1 + 3t2t

′
2,

D′′
7 = [(t1 + t2)(t′1 + t′2) − t1t

′
1 − t2t

′
2].

For any matrix A, let AT denote the transpose of A. Then
we have CT = V DT where
C =

[
c0 c1 c2 c3 c4 c5 c6 c7 c8

]
,

D =
[

D0 D1 D2 D3 D4 D5 D6 D7 D8

]
,

and

V =

⎡
⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
2w 3w+2 w+5 6w+6 6w+1 w+2 3w+5 6w w
0 6 5 3 3 5 6 0 6
0 6 6 1 6 1 1 0 0
0 6 3 5 5 3 6 0 0
0 6 5 4 3 2 1 0 0
6 6 6 6 6 6 6 0 0

5w 4w+4 6w+5 w+3 w+4 6w+2 4w+3 w 6w
0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎦

Using D7 = D′
7 + D′′

7w and c0, c1, . . . , c8 ∈ F7 we get
an explicit formula for the coefficients as

c0 = D0

c1 = 2D1 + 5D2 + 6D3 + D4 + 2D5 + 5D6 + 4D′′
7

c2 = 6D1 + 5D2 + 3D3 + 3D4 + 5D5 + 6D6 + 6D8

c3 = 6D1 + 6D2 + D3 + 6D4 + D5 + D6

c4 = 6D1 + 3D2 + 5D3 + 5D4 + 3D5 + 6D6

c5 = 6D1 + 5D2 + 4D3 + 3D4 + 2D5 + D6

c6 = 6D0 + 6D1 + 6D2 + 6D3 + 6D4 + 6D5 + 6D6

c7 = 4D1 + 5D2 + 3D3 + 4D4 + 2D5 + 3D6 + 3D′′
7

c8 = D8

(7)

Since D′′
7 requires 3 multiplications in F7, this shows that

we can multiply 5-term polynomials over F7 with 11 multi-
plications in F7.

By Proposition 1 we haveM2(3) ≤ 9. In the next exam-
ple using 3 overlaps (cf. Remark 2) we will improve it to
M2(3) ≤ 6.

Example 2 Let q = 2 and n = 3. Let w ∈ F4 \ F2 with
w2 + w + 1 = 0. Let a0 + a1x+ a2x

2 and b0 + b1x+ b2x
2

be two arbitrary 3-term polynomials over F2. We need to
compute c0, c1, c2, c3, c4 ∈ F2 such that

(a0 + a1x + a2x
2)(b0 + b1x + b2x

2) = c0 + c1x + . . . + c4x
4.

Using the elements 0, 1 of F2, w, w2 ∈ F4 \ F2 and the
point∞ we obtain the following matrix equation:

[
c0
c1
c2
c3
c4

]
=

[
1 0 0 0 0
0 1 w+1 w 1
0 1 w w+1 1
1 1 1 1 1
0 0 0 0 1

]⎡⎢⎣
a0b0

(a0+a1+a2)(b0+b1+b2)

(a0+wa1+w2a2)(b0+wb1+w2b2)

(a0+w2a1+w4a2)(b0+w2b1+w4b2)
a2b2

⎤
⎥⎦

Let us denote

D2 = (a0 + wa1 + w2a2)(b0 + wb1 + w2b2),
D3 = (a0 + w2a1 + w4a2)(b0 + w2b1 + w4b2).

In the proof of Proposition 1, each of the contributions of
D2 and D3 to the upper bound (6) are counted as 3. Using
w2 + w + 1 = 0, we obtain that

D2 = [(a0 + a2)(b0 + b2) + (a1 + a2)(b1 + b2)]
+w[(a0 + a1)(b0 + b1) + (a0 + a2)(b0 + b2)],

and

D3 = [(a0 + a1)(b0 + b1) + (a1 + a2)(b1 + b2)]
+w[(a0 + a2)(b0 + b2) + (a0 + a1)(b0 + b1)].

The counted multiplications in Proposition 1 for D1 are

(a0 + a2)(b0 + b2), (a1 + a2)(b1 + b2), (a0 + a1)(b0 + b1),

and for D2 are

(a0 + a1)(b0 + b1), (a1 + a2)(b1 + b2), (a0 + a2)(b0 + b2).

It is clear that there are at least 3 overlaps: each of the
multiplications forD1 are counted again forD2. Therefore
we obtain that M2(3) ≤ (6n − 2q − 5) − 3 = 6.

In the rest of this section we give our generalizations.
The first one is a straightforward generalization of Proposi-
tion 1. Recall that μq(m) is defined in Definition 1.

Proposition 2 Let q be a prime power and m ≥ 2 an inte-
ger. Assume that q+2

2 < n ≤ qm+2
2 . There exists a formula

for multiplying two arbitrary n-term polynomials over Fq

which gives

Mq(n) ≤ q + 1 + μq(m)(2n − q − 2). (8)
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Proof. By changing μq(2) ≤ 3 with μq(m) and apply-
ing the similar arguments in the proof of Proposition 1, we
complete the proof.
It follows from Definition 1 that if m1, m2 are positive

integers and m1 | m2, then μq(m1) ≤ μq(m2). Here and
throughout the paper, for two positive integersm1 andm2,
the notation m1 | m2 denotes that m1 divides m2. Indeed
as Fqm1 is a subfield of Fqm2 , any formula for multiplying
two arbitrary elements of Fqm2 can be used for multiplying
two arbitrary elements of Fqm1 . Moreover if 1 ≤ m1 ≤ m2

are positive integers with m1 � m2, then in all cases we
know the upper bound on μq(m1) is less than or equal to
the upper bound on μq(m2). Therefore we would like to
use all suitable finite fields of small size in order to obtain a
better upper bound onMq(n). Using this idea now we give
our general result which improves Proposition 2. First we
give some notation. Let Sq(k) be the number of elements
in Fqk \ Fqd where d|k. In other words,

Sq(k) = #{α ∈ Fqk | α /∈ Fqd for all d|k}. (9)

Theorem 1 Let q be a prime power and m ≥ 2 an integer.
For an integer n > q+2

2 assume it holds that

2n − 2 ≤ q +
∑

2≤k≤m

Sq(k), (10)

where Sq(k) is defined in (9). There exists a formula
for multiplying two arbitrary n-term polynomials over Fq

which gives

Mq(n) ≤ 1 + q +
∑

2≤k<m μq(k)Sq(k)+
μq(m)(2n − 2 − q −∑2≤k<m Sq(k)). (11)

Proof. Let m̄ be the least commonmultiple of the integers
1, 2, . . . , m andF = Fqm̄ . It is clear that Fqk is a subfield of
F for each 2 ≤ k ≤ m. By assumption (10), apart from the
point at∞, we can choose 2n − 2 elements of F such that
exactly q of them are from Fq , for 2 ≤ k < m exactly Sq(k)

of them are from Fqk and
(
2n − 2 − q −∑2≤k<m Sq(k)

)
of them are from Fqm . Using the method in the proofs of
Propositions 1 and Proposition 2, we observe that Toom-
Cook type evaluations at the point ∞ and at the elements
of Fq contribute to Mq(n) by at most q + 1 multiplica-
tions. For each 2 ≤ k < m Toom-Cook type evalua-
tions at the chosen elements of Fqk contribute toMq(n) by
at most μq(k)Sq(k) multiplications. Finally, Toom-Cook

type evaluations at the
(
2n − 2 − q −∑2≤k<m Sq(k)

)
chosen elements of Fqm contribute to Mq(n) by at most

μq(m)
(
2n − 2 − q −∑2≤k<m Sq(k)

)
. This completes

the proof.

Remark 3 As in Proposition 1 and Remark 2, we can im-
prove the upper bound (11) of Theorem 1 if we know the
existence of overlaps. We provide such an example in Sec-
tion 4.

4 Improved Bounds for Multiplying 10, 11
and 12-term Polynomials over F2

In this section, we will give a mixed method which pro-
vides improved bounds. Then we show existence of some
overlaps in Theorem 1 for q = 2 in detail and we will ap-
ply the results to n = 10, 11 and 12 by using the mixed
method. The following fact will be combined by the pro-
posed method to obtain the mixed method.

Fact 1 Let a(x) and b(x) be n-term polynomials over Fq .
If � coefficients of the product a(x) · b(x) are known then
(2n − 2 − �) elements of Fq are enough for finding other
coefficients of the product a(x) · b(x) with (2n − 2 − �)
multiplications in Fq .

We refer to [3, p. 30] for the proof of this fact. Note that
since we count the point ∞ as an evaluation point, it is
enough to use (2n − 2 − �) points. The following proposi-
tion gives some coefficients of the product polynomial with
efficient number of multiplications. Therefore, we can use
this proposition for further improvements.

Proposition 3 Let a(x) =
∑n−1

i=0 aix
i and b(x) =∑n−1

i=0 bix
i be n-term polynomials over Fq and let c(x) =∑2n−2

i=0 cix
i be their product. It always holds

c0 = a0b0, c1 = (a0 + a1)(b0 + b1) − a0b0 − a1b1,
c2 = (a0 + a2)(b0 + b2) − a0b0 − a2b2 + a1b1,
c2n−2 = an−1bn−1, c2n−3 = (an−1 + an−2)(bn−1 +
bn−2) − an−1bn−1 − an−2bn−2, c2n−4 = (an−1 +
an−3)(bn−1 +bn−3)−an−1bn−1−an−3bn−3+an−2bn−2.

Proof of the proposition is obvious. Note that c0 and c2n−2

are the products corresponding to evaluations at 0 and ∞.
After using those points the cost of each of c1 and c2n−3 is 2
multiplications. Similarly, the cost of each of c2 and c2n−4

is 2 multiplications when we use c0, c1, c2n−2 and c2n−3.
The following example shows how to use Proposition 3 and
Fact 1.

Example 3 Consider 5-term polynomial multiplication
over F7. Since 7 < 2.5− 2, we haveM7(5) > 2.5− 1 = 9.
In Example 1 it is found M7(5) ≤ 11. Now we will find
the optimal bound M7(5) = 10 by using interpolation and
Proposition 3. Now using the points of F7, ∞ and the
known coefficient c1 = (a0 + a1)(b0 + b1) − a0b0 − a1b1

in the equation(
4∑

i=0

aix
i

)(
4∑

i=0

bix
i

)
=

(
8∑

i=0

cix
i

)
,

we get
x = 0 ⇒ a0b0 = c0,

x = 1 ⇒ (a0 + a1 + ... + a4)(b0 + b1 + ... + b4) =
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(c0 + c1 + ... + c8),

x = 2 ⇒ (a0 + 2a1 + ... + 24a4)(b0 + 2b1 + ... + 24b4) =

(c0 + 2c1 + ... + 28c8),

x = 3 ⇒ (a0 + 3a1 + ... + 34a4)(b0 + 3b1 + ... + 34b4) =

(c0 + 3c1 + ... + 38c8),

x = 4 ⇒ (a0 + 4a1 + ... + 44a4)(b0 + 4b1 + ... + 44b4) =

(c0 + 4c1 + ... + 48c8),

x = 5 ⇒ (a0 + 5a1 + ... + 54a4)(b0 + 5b1 + ... + 54b4) =

(c0 + 5c1 + ... + 58c8),

x = 6 ⇒ (a0 + 6a1 + ... + 64a4)(b0 + 6b1 + ... + 64b4) =

(c0 + 6c1 + ... + 68c8),

x = ∞ ⇒ a4b4 = c8,

and c1 = (a0 + a1)(b0 + b1)− a0b0 − a1b1. If we construct
the system of linear equations in F7 like in Example 1, we
see that the matrix of the linear system is invertible. There-
fore we getM7(5) = 10 since 7 multiplications comes from
the elements of F7, 1 multiplication is counted for∞ and 2
multiplications are counted for c1.

The proposed method described in Section 3 can be com-
bined with Fact 1 and Proposition 3 as in Example 3. We
call this method as the mixed method. Now we will find
the polynomial multiplication bounds for n = 10, 11 and
12 over F2 by using the mixed method. However, in order
to find better results we need to find all possible overlaps.
The following proposition is for the case F2.

Proposition 4 Let q = 2, w ∈ F4 with w2 + w + 1 = 0,
α ∈ F8 with α3+α+1 = 0 and γ ∈ F16 with γ4+γ+1 = 0.
For an integer n ≥ 1, let A(x) =

∑n−1
i=0 aix

i and B(x) =∑n−1
i=0 bix

i be two arbitrary n-term polynomials over F2.
In computing the product A(x)B(x) using the method of
Theorem 1:

i) the total number of multiplications needed for the eval-
uation at the elements of the set {w, w2} is at most 3,
instead of μ2(2) · 2 ≤ 6,

ii) the total number of multiplications needed for the eval-
uation at the elements of the set

{
α, α2, α4

}
(respec-

tively
{
α3, α6, α5

}
) is at most 6, instead of μ2(3) ·3 ≤

18,

iii) the total number of multiplications needed for the eval-
uation at the elements of the set

{
γ, γ2, γ4, γ8

}
(re-

spectively
{
γ3, γ6, γ12, γ9

}
and

{
γ7, γ14, γ13, γ11

}
)

is at most 9, instead of μ2(4) · 4 ≤ 36.

Proof. We give a detailed proof of item i) only as the
proofs of the items ii) and iii) are similar. Let w1 = w
and w2 = w2. Let I0 = {0 ≤ i ≤ n − 1 : i �≡ 0
mod 3}, I1 = {0 ≤ i ≤ n − 1 : i �≡ 1 mod 3} and
I2 = {0 ≤ i ≤ n − 1 : i �≡ 2 mod 3}. Using the relation
w2

1 = w1 + 1 we obtain that

A(w1) = A0 + w1A1, B(w1) = B0 + w1B1,

where A0, A1, B0, B1 ∈ F2 are given by

A0 =
∑
i∈I1

ai, A1 =
∑
i∈I0

ai, B0 =
∑
i∈I1

bi, B1 =
∑
i∈I0

bi.

Then, using a Karatsuba type argument, we get
A(w1)B(w1) = (A0B0 + A1B1) + w1[(A0 + A1)(B0 +
B1) + A0B0)].
We note that

A0 + A1 =
∑
i∈I2

ai, and B0 + B1 =
∑
i∈I2

bi.

The counted multiplications for the evaluation at w1 in the
method of Theorem 1 are

A0B0 =

(∑
i∈I1

ai

)(∑
i∈I1

bi

)
,

A1B1 =

(∑
i∈I0

ai

)(∑
i∈I0

bi

)
,

(A0 + A1) (B0 + B1) =

(∑
i∈I2

ai

)(∑
i∈I2

bi

)
.

(12)

Since w1 andw2 are conjugates of each other we havew2
2 +

w2 + 1 = 0. So we have w2
2 = w2 + 1 and we obtain that

A(w2) = A0 + w2A1, B(w2) = B0 + w2B1,

where A0 = A0, A1 = A1, B0 = B0, and B1 = B1 ∈
F2. It is seen that multiplications needed for the evaluation
at w and multiplications needed for the evaluation at w2 are
the same, and hence the total number of evaluations needed
for the elements of {w, w2} is 3. This completes the proof
of item i).

Remark 4 The observation that is used in the proof of
Proposition 4 can be used for any finite field Fq . If Fqd

is the extension field of Fq then the total number of multi-
plications needed for the evaluation at the elements of the
set S = {α, αq, αq2

, . . . , αqd−1} is equal to the total num-
ber of multiplications needed for the evaluations at the ele-
ment α because the elements in S are all conjugates of each
other and they are the roots of the reduction polynomial of
Fqd . Note that overlaps are independent from the reduction
polynomial of Fqd . However, if polynomial multiplication is
used for finite field multiplication then the reduction poly-
nomial affects the number of additions. In order to decrease
the number of additions it would is better to chose the re-
duction polynomial having coefficients as low as possible
such as binomial or trinomial.

Now we will show how to find the polynomial multipli-
cation bounds by using the mixed method.

89



Example 4 Let q = 2 and w, α, γ be as defined in propo-
sition 4. We first consider 10-term polynomials over F2. As
2 · 10− 2 = 18, using the method of Theorem 1, apart from
the point at∞, it is enough to choose the following evalua-
tion 18 points: {0, 1}, {w, w2}, {α, α2, α4}, {α3, α6, α5},
{γ, γ2, γ4, γ8}, {γ3, γ6, γ12, γ9}. Using Proposition 4 and
the method of Theorem 1 we obtain existence of an explicit
formula for multiplying two 10-term polynomials over F2

which gives

M2(10) ≤ 1 + 2 + 3 + 6 + 6 + 9 + 9 = 36.

Next we consider 11-term polynomials over F2.
We have 2 · 11 − 2 = 20 and apart from the
point ∞ we consider the following 20 points:
{0, 1}, {α, α2, α4}, {α3, α6, α5}, {γ, γ2, γ4, γ8},
{γ3, γ6, γ12, γ9}, {γ7, γ14, γ13, γ11}. Hence we obtain

M2(11) ≤ 1 + 2 + 6 + 6 + 9 + 9 + 9 = 42.

Finally we consider 12-term polynomials over
F2. We have 2 · 12 − 2 = 22 and apart from
the point at ∞ we consider the following 22
points:{0, 1}, {w, w2}, {α, α2, α4}, {α3, α6, α5},
{γ, γ2, γ4, γ8}, {γ3, γ6, γ12, γ9}, {γ7, γ14, γ13, γ11}.
Then we get

M2(12) ≤ 1 + 2 + 3 + 7 + 7 + 9 + 9 + 9 = 47.

However, a recent paper [5] finds M2(10) ≤
35, M2(11) ≤ 40 and M2(12) ≤ 44 by using Chinese Re-
mainder Theorem. We will also obtain the same bound in
[5] by using the mixed method as follows: First n = 10.
As 2 · 10 − 2 = 18, using the method of Theorem 1, apart
from the point at ∞, it is enough to choose 18 evaluation
points. If we use c16, c15, c1 and c2 given in Proposition 3,
it is enough to choose 18 − 4 = 14 evaluation points. Let
us choose{0, 1}, {w, w2}, {α, α2, α4}, {α3, α6, α5},
{γ, γ2, γ4, γ8} which gives

M2(10) ≤ 1 + 2 + 3 + 6 + 6 + 9 + 8 = 35.

For n = 11 we use {0, 1}, {w, w2}, {α, α2, α4},
{α3, α6, α5}, {γ, γ2, γ4, γ8}, {γ3, γ6, γ12, γ9} together
with c1 and c19. Then it is obtained M2(11) ≤ 40 since
c1 and c19 cost 4 multiplications. Similarly, if we use
c16, c15, c1 and c2 instead of using points in the set
{γ7, γ14, γ13, γ11} in the computation of M2(12) we
decreased the number of multiplications from 45 to 44
since the cost of c16, c15, c1 and c2 is 8 while the cost of
{γ7, γ14, γ13, γ11} is 9 multiplications.

5 Efficiency of the Proposed Method

The proposedmethod providesmultiplication algorithms
which uses less number of multiplications than known

methods. However, since the proposed method is based on
the interpolation method, the number of additions may in-
crease. The main question is the effect of those additions
in practice. In this section, we discuss the efficiency of the
proposed method.

In order to see the effect of additions, we will give tim-
ing results for 5-term polynomials over fields of character-
istic 5. We compare the proposed method for 5-term poly-
nomial multiplication over F5 with Montgomery’s 5-term
multiplication formula [8] and Karatsuba’s 5-term multipli-
cation formula [10]. Note that Mongomery’s and Karat-
suba’s 5-term polynomial multiplication formulae use 13
and 15 multiplications in F5, respectively.

The proposed method provides a 5-term polynomial
multiplication formula with 11 multiplications in F5 as fol-
lows. Let a(x) =

∑4
i=0 aix

i and b(x) =
∑4

i=0 bix
i be

5-term polynomials over F5 such that a(x)b(x) = c(x) =∑8
i=0 cix

i. We use the 5 points from F5,∞, α and β where
α, β ∈ F52/F5 such that α2 + 3 = 0 and β2 + 3 = 0.
Moreover, if we use the known coefficient c1 = (a0 +
a1)(b0+b1)−a0b0−a1b1, we obtain the multiplication for-
mula. Note that the total number of multiplications needed
for the evaluation at the elements of the set {α, β} is at
most 3 multiplications in F5 by Remark 4. Therefore we
find M5(5) ≤ 11. The explicit formula is the following:
m1 = a0b0, m2 = (a0 + a1)(b0 + b1), m3 = a1b1,
m4 = (a0 + a1 + a2 + a3 + a4)(b0 + b1 + b2 + b3 + b4),
m5 = (a0+2a1+4a2+3a3+a4)(b0+2b1+4b2+3b3+b4),
m6 = (a0+3a1+4a2+2a3+a4)(b0+3b1+4b2+2b3+b4),
m7 = (a0+4a1+a2+4a3+a4)(b0+4b1+b2+4b3+b4),
m8 = a4b4, m9 = (a0 + 2a2 + 4a4)(b0 + 2b2 + 4b4)
m10 = (a1 + 2a3)(b1 + 2b3),
m11 = (a1+2a3+a0+2a2+4a4)(b1+2b3+b0+2b2+4b4).
c0 = m1,
c1 = m2 − m1 − m3,
c2 = 2m1+3m4+4m5+4m6+3m7+2m8+4m9+8m10,
c3 = 2m2 − 2m1 − 2m3 + 3m4 + 2m5 + 3m6 + 2m7 +
4m11 − 4m9 − 4m10,
c4 = 4m1 + 4m4 + 4m5 + 4m6 + 4m7 + 4m8,
c5 = 4m2 − 4m1 − 4m3 + 4m4 + 2m5 + 3m6 + m7,
c6 = 3m1 +m4 +2m5 +2m6 +m7 +3m8 +m9 +2m10,
c7 = 3m2−3m1−3m3 +m4 +m5 +4m6 +4m7 +m11−
m9 − m10,
c8 = m8.

In Table 1, we give timing comparisons among our ex-
plicit formula, Montgomery’s 5-term polynomial multipli-
cations [8] and Karatsuba’s 5-term polynomial multiplica-
tion formula [10]. We implement the formulae recursively
by using (2) for 5k-term polynomial multiplications over
F5, where k ≥ 1. The implementation of formulae in the
platform of a single-processor 3.00-GHZ Pentium 4 gives a
slightly slower timing results for 5-term polynomials as in-
dicated in Table 1. However, proposed explicit formula for
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5-term polynomial multiplications over F5 is much better in
timings compared to [8] and [10], especially for k > 1 be-
cause the number of multiplications dominates the number
of additions for k > 1.

Table 1: Timings (μ sec) for F5 Polynomial Multiplication

n Proposed Method Montgomery Karatsuba

5 0.14 0.12 0.09
25 3.58 3.83 3.98
125 49.6 62.08 69.12
625 652.8 944.64 1,075.2
3,125 16,896 32,481 37,376

Finally we give two examples of practical applications
for which the number multiplications in polynomial multi-
plication formula is much more important than the number
additions used in that formula.
Firstly we consider polynomial multiplication over large

finite fields. Let m > 1 be an integer. It is well known
that any n-term polynomial multiplication formula over Fq

is valid for n-term polynomial multiplication over Fqm . If
we apply the proposed formula over Fqm , the effect of addi-
tion will be negligible. For example, consider the proposed
formula for 5-term polynomial multiplication formula over
F5. When we use this proposed formula for 5-term polyno-
mials over F5m , we use 11 multiplications in F5m whereas
Montgomery’s formula uses 13 multiplications in F5m and
Karatsuba’s formula uses 15 multiplications in F5m . Since
the multiplication in F5m takes much more time than the
addition in F5m , the formula which uses less multiplication
will produce faster polynomial multiplication.
Second we consider the multiplication of matrix poly-

nomials. Multiplication of matrices takes much more time
than their addition. In such an application, the number of
multiplications will be more important parameter than the
number of additions. For example, consider the 10-term bi-
nary matrix polynomials with coefficients of the size 512×
512 matrices. In this case the multiplication of those ma-
trices will take much more time than the additions of those
matrices. So, the proposed method will give faster matrix
multiplication of polynomials.

6 Conclusions

We gave a method for polynomial multiplication over
finite fields using field extensions and polynomial inter-
polation. Using this method we obtained explicit formu-
lae which improved the previous results. We analyzed for
n-term polynomial multiplications over F2, where n ∈
{10, 11, 12}, in detail. Moreover we discussed the effi-
ciency of the proposed method.
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