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Abstract

This paper describes an efficient arithmetic processor
for elliptic curve cryptography. The proposed processor
consists of special architectural components, the most im-
portant of which is a modular multiplication unit imple-
mented using the systolic Montgomery multiplication algo-
rithm. Another novelty of our proposed architecture is that
it implements the field GF (3m), which provides significant
performance gains.

1. Introduction

Elliptic curve cryptography (ECC) is a public-key
cryptographic technique, proposed by Miller [10] and
Koblitz [5] as an alternative to the RSA [14]. The security of
ECC is based on the elliptic curve discrete logarithm prob-
lem [6]. According to New European Schemes for Signa-
ture, Integrity and Encryption (NESSIE) report [13], ECC
can provide same security level with RSA using shorter en-
cryption key. Shorter key implies less memory need and
lower power consumption. Also, ECC implementations
are generally faster than RSA cryptosystem for equal key
lengths [13].
In this paper, an ECC defined overGF (3m) finite field is

implemented on a field programmable gate array (FPGA).
There are several reasons why we choose GF (3m). One
of these reasons is significant area and performance gain.
Also, to the best of our knowledge, there are few hard-
ware implementations of ECC over GF (3m), while there
are many such implementations of ECC over GF (p) and
GF (2m).
In our implementation, we use Montgomery Modu-

lar Multiplication (MMM) algorithm [11] for modular
multiplication operation which has considerable effect on
the ECC performance. Also, other subblocks which
form whole ECC are adapted to the selected finite field
and implemented. These subblocks are modular addi-

tion/subtraction (MAS), modular multiplicative inversion
(MMI), elliptic curve point multiplier (EPM) and elliptic
curve point doubling/addition (EPDA) blocks. In addition,
transformation circuits that convert normal inputs to appro-
priate forms are implemented for sub-blocks separately. All
these sub-blocks are controlled using a state machine.
The remainder of this paper is organized as follows: in

Section 2, a summary of previous implementations is given.
In Section 3, we give a brief mathematical background for
ECC. Section 4 presents hardware implementation of EC
processor and implementation results and finally Section 5
concludes the paper.

2. Previous Contributions

To the best of our knowledge, there are only a few
hardware implementations of elliptic curves defined over
GF (pm). We compare our results only to those given
in [1, 12, 4]. There are many software implementations of
ECC over GF (pm), but it is not meaningful to compare
our work with them. In 2003, Bertoni report the circuit
performance using LSDE multiplier and cubing circuit [1].
Also in 2003, Page and Smart report characteristic 3 arith-
metic for use in cryptosystems based on the Tate and Weil
Pairing [12]. Page and Smart employ projective coordinate
which we have used in this implementations. Another hard-
ware work on characteristic 3 is given in [4] by Kerins et
al. They use modified Duursma-Lee algorithm using Tate-
Pairing method in 2005.

3. Mathematical Background

3.1. Montgomery modular multiplication
over GF (pm)

For modular multiplication, we choose Montgomery’s
algorithm [11]. The approach of Montgomery avoids the
time consuming trial division that is a common bottleneck
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in naive modular multiplication algorithms. Montgomery’s
technique is proved to be very efficient in both hardware
and software implementations and is the basis of many im-
plementations of the modular multiplication in cryptogra-
phy. In this paper, we work on elliptic curves defined over
GF (3m) finite field, and thus, we adapt the general form
of MMM algorithm to GF (pm) representation. The Mont-
gomery multiplication is defined as follows;

Mont(x, y) = xyR−1 mod N,

where N = (nl−1nl−2 . . . n1n0)b, 0 < x, y < N , R =
bl > N with gcd(N, b) = 1. In this paper, we describe only
the MMM for the field GF (pm). More details for MMM
algorithm can be found in [11, 9, 7].
InGF (pm), Montgomerymodular multiplication of two

numbers represented in the polynomial basis is defined as
follows:

c(x) = a(x)b(x)r−1(x) mod n(x),

where r(x) = xl. The algorithm is given below.

Algorithm 1 Montgomery Modular Multiplication Algo-
rithm overGF (3m)

Require: a(x) = al−1x
l−1 + al−2x

l−2 + . . . + a1x +
a0, b(x) = bl−1x

l−1 + bl−2x
l−2 + . . . + b1x +

b0, n(x) = nlx
l + nl−1x

l−1 + . . . + a1x + n0,
n0 = 1, −n(x)′n(x) mod p(x) = 1, r(x) = xl and
gcd(n(x), r(x)) = 1

Ensure: c(x) = a(x)b(x)x−l mod n(x)
1: c(x) = 0
2: for i = 0 to l − 1 do
3: ui = (c0 + aib0)n′(x) mod 3
4: c(x) = c(x) + aib(x) + uin(x)
5: c(x) = c(x)/x
6: end for

Montgomery’s method for multiplying two numbers de-
fined in GF (pm) avoids trial division by n(x) which is an
expensive operation in hardware.
Algorithm 1 checks the last digit of partial product of

a(x)b(x) in every step of the for loop. If the addition of aib0

product and the least significant digit of c(x) is 0, it means
the partial product is divisible by x and nothing is added
to c(x). It is divided by x directly. If the last digit of the
partial product is not equal to 0, then a value must be added
to the partial product to make it divisible by x. At this step,
adding a multiple of the reduction polynomial, n(x), does
not change the result since the result is given in modn(x).
n′(x) is used to determine which multiple of n(x) will be
added. For p = 3, n(x)′ mod 3 = −n(x)−1 mod 3 =
(3 − n0)−1 mod 3 = 2−1 mod 3 = 2. Division by x is
performed by a right shift operation.

3.2. Elliptic curve cryptography over GF (3m)

An elliptic curve E which is defined on a field K is ex-
pressed with the solutions of the Weierstrass equation and
the point at infinity [15]. General form of this equation is
given as follows:

y2 + a1xy + a3
5y = x3 + a2x

2 + a4x + a6

For characteristic 3, Weierstrass equation can be simplified
using the transformations given in [2]. With these trans-
formations, an elliptic curve equation can be expressed in
GF (3m) as follows:

y2 = x3 + a2x
2 + a6, j(E) �= 0

y2 = x3 + a4x + a6, j(E) = 0 (1)

The solutions of Eq. 1 and the point at infinity form an
Abelian group with the addition operation and these points
are used in the cryptosystem. Multiplication of a point
on the curve with a scalar is the main operation for ECC.
This operation can be done using the double-and-add algo-
rithm [10, 5] shown below.

Algorithm 2 Double-and-Add Algorithm

Require: K = kn−12n−1+kn−22n−2+ . . .+k1+k0 with
kn−1 = 1 and P = (x, y)

Ensure: Q = KP = (x′, y′)
Q = P
for i = n − 2 downto 0 do

Q = 2Q
if ki = 1 then

Q = Q + P
end if

end for

Addition and point doubling operations in Algorithm 2
are done in the affine coordinates using formulas given
in [16]. These formulas include inversion operations which
are very expensive in hardware. We can perform addition
and doubling in the projective coordinates with only one in-
version operation at the end of the point multiplication. The
benefits of using the projective coordinates in ECC are ex-
plained in [8].

3.3. Polynomial representation

Our algorithm for MMM is defined on the polynomial
representation. An element of a of GF (pm) is represented
by a polynomial with m coefficients as follows:

a(x) = am−1x
m−1 + am−2x

m−2 + . . . + a1x
1 + a0,

where the coefficients ai ∈ GF (p).
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Figure 1. EC point multiplier circuit block di-
agram

4. Hardware implementation

Our elliptic curve processor (ECP) can be divided into
four hierarchical levels as shown in Fig. 1. The operation
blocks at each level from top to bottom are as follows;

1. Main Controller (MC).

2. Affine to projective converter (AtoP), Normal to
Montgomery converter (NtoM), EC point multiplier
(ECPM), Projective to Affine converter (PtoA), Mont-
gomery to normal converter (MtoN).

3. EC point doubling circuit (ECPD), EC point addi-
tion circuit (ECPA), Modular multiplicative inverter
(MMI).

4. Modular addition/subtraction circuit (MASC), Mont-
gomery modular multiplication circuit (MMMC).

For simplicity all blocks have their own FSMs and data
paths. This allows for independent optimization and test-
ing of the building blocks.

4.1. Montgomery modular multiplication
circuit design

As seen in Fig. 1, the Montgomery modular multipli-
cation circuit (MMMC) is used by most of the sub-blocks
in ECC. Implementation of Algorithm 1 includes a systolic
array structure which minimizes the maximum path delay.
Also, maximum clock frequency is independent of the in-
put digit size. c(x) = c(x) + aib(x) + uin(x) value in
Algorithm 1 is updated in every iteration and c(x) gives the

Figure 2. Systolic array structure

result after the last iteration. Every digit of c(x) is calcu-
lated by a different systolic array cell. Because our finite
filed is GF (3m), every digit of c(x) is expressed by a value
in GF (3) field. Total number of cells is 1 more than total
digit number.
The systolic array consists of 3 different cell structures.

The first one is Right Most Cell (RMC) which calculates
ui in step 3 of Algorithm 1. ai, b0 and c0 are the inputs
of this cell. It generates ui and transfers the input ai to its
output. Second cell structure, Regular Cell (RC), calculates
one ternary digit of c(x). For ith iteration of Algorithm 1,
jth cell calculates ci,j = ci−1,j+1 + aibj + uinj mod 3.
ci−1,j+1, ai, bj , ui and nj are given as inputs. It calculates
ci,j and gives it to previous cell as an input. Also, it transfers
ai, ui inputs to its output. Last cell in the array is the Left
Most Cell (LMC). It is a simpler form of the RC. Last digit
of c(x) does not take ai and b0 as inputs so using RC with
zero values of ai and b0 gives us LMC.
In the systolic array structure, ternary digits of the mul-

tiplier and ternary digits of the irreducible polynomial n(x)
are given parallel to every cell. The least significant digit of
the multiplicand is given to RMC in every two clock cycles
and then multiplicand is shifted to the right one ternary digit
(2 bits).
Total number of clock cycles to obtain the result is 2l +

2m, where l, is the digit size of the inputs and m is the
number of cells in the array.
Performance of the MMMC is given for Xilinx Virtex

1000E. The systolic array is 97 ternary digits width. For
the total number of iteration steps l = 97 and the number
of cells m = 97, the total number of clock cycles is 388.
The total circuit area is 951 slices and the maximum clock
frequency is 80,723 MHz. The minimum clock period, Tp,
is 12,388 nanoseconds. The multiplication time is 4.8 μsec.
The throughput rate is 40.41 Mb/sec.
Because most of the sub-blocks of the EC use the

MMMC, the performance of it effects the whole perfor-
mance of ECC considerably. The MMMC performs mul-
tiplication operation with reduction so we do not need to
design any separate reduction block. Another advantage of
the MMMC is its extendable structure.
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4.2. Modular addition/subtraction circuit
design

Modular addition/subtraction circuit (MASC) adds or
subtracts (according to add/subtract switch) the coefficients
of the input polynomials in GF (p) domain.

4.3. Point addition and point doubling cir-
cuits in projective coordinates

The inputs to the given formulas below are points on the
curve that are written in the projective coordinates as ex-
plained in Section 3.2. The outputs of equations are also
in the projective coordinates. Let P = (x1, y1, z1),Q =
(x2, y2, z2). The projective coordinate equivalent of the
point addition and the doubling equations are as follows [3].
Point Addition:(P + Q = (x3, y3, z3))
λ1 = x1z

2
2 , λ2 = x2z

2
1 , λ3 = λ1 - λ2, λ4 = y1z

3
2

λ5 = y2z
3
1 , λ6 = λ4 - λ5, λ7 = λ1 + λ2

λ8 = λ4 + λ5, z3 = z1z2λ3, x3 = λ2
6 - λ7 λ2

3

y3 = λ8 λ3
3 - λ

3
6

Point Doubling:(P + P = (x3, y3, z3))
λ1 = −z4

1 , z3 = −y1z1, λ2 = x1y
2
1 , x3 = λ2

1 + λ2

λ3 = −y4
1, y3 = λ1(λ2 − x3) − λ3

We are using MMMC in these equations for mul-
tiplication operations. Also, MASC is used for addi-
tion/subtraction operation.

4.4. Modular multiplication inverter

The modular multiplicative inversion is computed using
Fermat’s theorem [6, 9]. For GF (pm) field Fermat’s theo-
rem is given as follows:

a−1 = apm−2 mod p(x)

where p(x) = pmxm + pm−1x
m−1 + . . . + p1x

1 + p0 is
an irreducible polynomial and pi ∈ GF (p). To calculate
a397−2 mod p(x), we converted 397 −2 to binary represen-
tation and used square-and-multiply algorithm [9]. MMI
controls the execution of the square-and-multiply algorithm

4.5. Affine to projective coordinates con-
verter

Because the point addition and doubling operations in
the affine coordinates include the inversion operation which
is very expensive in hardware, we choose to work in the
projective coordinates. The benefits of the projective coor-
dinates are explained in [8]. For GF (p3) finite field, the

coordinate transformation between the affine and the pro-
jective coordinates is as follows [3],

(x, y) = (X/Z2, Y/Z3)

Using this transformation, affine to projective (AtoP) con-
version is as follows;

(X, Y, Z) = (xZ2, yZ3, Z) (2)

In Eq. 2, if we choose Z = 1 then it is given as follows;

(X, Y, Z) = (x, y, 1)

where (x, y) is the point in the affine coordinates and
(X, Y, Z) is the same point in the projective coordinates.
This operation is just adding 1 as a third coordinate.

4.6. Normal to Montgomery representation
converter

The multiplication using the MMMC of two polynomi-
als that are in Montgomery representation will produce the
Montgomery representation of the product as

Mont(a(x)r(x), b(x)r(x)) = a(x)b(x)r(x) mod n(x)

Also, modular addition of two polynomials that are
in the Montgomery representation produce the Mont-
gomery representation of the sum as a(x)r(x) mod n(x)+
b(x)r(x) mod n(x) = (a(x) + b(x))r(x) mod n(x). Be-
cause of these relations, the Montgomery representation of
the coordinates of P point is calculated in the beginning
of the point multiplication by NtoM circuit and all the op-
erations during EC point multiplication will be performed
in the Montgomery representation. The conversion to the
Montgomery representation of any number is computed as
follows

Mont(a(x), r(x)2) = a(x)r(x) mod n(x)

.

4.7. Elliptic curve point multiplier

The Elliptic Curve Point Multiplier (EPM) circuit con-
trols the execution of the Algorithm 2. In every iteration of
the loop, an ECPD is executed. An ECPA is only performed
when the evaluated key bit is 1.

4.8. Projective to affine coordinates con-
verter

After completing the EC point multiplication, the result
point Q must be converted from the projective coordinates
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Table 1. Area performance of ECC sub-blocks
Operation # of Slices # of LUTs

NormaltoMont 1658 1718
ECPM 11758 20482
PtoA 4115 7185
MtoN 1481 1664
ECPD 4634 8693
ECPA 5100 9532
MMI 1876 3179
MAS 423 789
MMMC 951 1719

to the affine coordinates. This operation is performed as
follows:

(x, y) = (X/Z2, Y/Z3) ,

where (x, y) is the point in affine coordinates and (X, Y, Z)
is the same point in projective coordinates. This conver-
sion needs 1 inversion and 4 multiplications. First, MMI
of Z(x), Z(x)−1 is calculated. Then Z(x)−2 and Z(x)−3

are calculated using MMMC twice. Finally, X(x)Z(x)−2

and Y (x)Z(x)−3 values are calculated using the MMMC.
As it is explained in Section 4.6, all MMMC inputs must be
converted to the Montgomery representation before calcu-
lation.

4.9. Montgomery to normal representation
converter

Because the coordinates of the product point must be in
the normal representation, as a last action, all the results
must be converted to the normal representation. Let a′(x) =
a(x)r(x) be the Montgomery representation of a(x). Then,
we haveMont(a′(x), 1) = a(x) mod n(x).

4.10. Implementation results

Our ECC processor is implemented on the VirtexE fam-
ily FPGA. The input parameters are the coordinates of a
point on an elliptic curve and the scalar value. Also other
control signals such as RESET, START and DONE, are
available. Area requirements of all ECC sub-blocks for 97
ternary digits (194 bits) inputs is given in Table 1.
Timing results of ECC sub-blocks for 97 ternary digits

inputs are given in Table 2. Because MC is placed at the
top of all the other blocks and controls the execution of the
point multiplication, the maximum operating frequency of
this block is used to calculate the execution time of all the
other sub-blocks.
In the literature, there are only a few hardware imple-

mentations for elliptic curves defined over GF (pm). Also,

Table 2. Time performance of ECC sub-blocks
Operation Sub-operations # of Clock Time(µsn)
NtoM 2MMM 776 10.34
ECPM k.ECPD, (k/2)ECPA 1134318 15124
PtoA 4MMM+ 1MMI 91180 1215.7
MtoN 2MMM 776 10.34
ECPD 8MMM+ 6MAS 3122 41.62
ECPA 14MMM+ 6MAS 5450 72.66
MMI (3l/2)MMM 89628 1195
MAS - 3 0.04
MMMC - 388 5.17
MC All 1225498 16339

these implementations use different methods and technolo-
gies. We cannot compare our design under the same con-
ditions. We have located three studies about elliptic curves
over GF (397) [12, 1, 4]. They give multiplication circuit
performance instead of the elliptic curve performance. We
tried to use the same FPGA technology with the evaluated
studies for comparison. We could achieve this compari-
son for only two of these. The first one is using the Tate-
Pairing method and the second work is implemented using
the Least Significant Digit-Element (LSDE) multiplication
method. The study given in [12] is implemented using the
serial bit multiplication method and uses old technology so
we cannot use the same technology with this work and thus
we only report their performance results. All comparison
results are given in Table 3.
As can be seen from Table 3 that our implementation has

the smallest area. Also, our study is comparable with [4].
The results given in [1] are optimized for specific param-
eters therefore it is not meaningful to compare it with our
generic structure.
Comparing our GF (3m) with GF (2m) is not meaning-

ful because implementation of these fields have different
hardware architecture. It is obvious that arithmetic opera-
tions in GF (2m) is simpler because addition and multipli-
cation in binary field are just one operation. In GF (3m),
these operations need slightly larger look-up tables. There-
fore, these fields can be compared just in the cryptographic
complexity point of view.
Also, we give performance results using latest FPGA

technology which is available now. This result is given in
the bottom row of Table 3.

5. Conclusions

We have described an efficient implementation of a el-
liptic curve processor over the field GF (3m). The pro-
cessor can be programmed to execute a modular multipli-
cation, addition, subtraction, multiplicative inversion, EC
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Table 3. Comparison of final results

Tool/FPGA Area Mult.Time
Ref [4] Not Defined 4335 Slice Mult. 0.9µsn

TatePairing Virtex2Pro 2210 Slice Inv.
Our Study Xilinx 1215 Slice 1.66µsn@
MMM Virtex2Pro 223.7MHz
Ref [1] Synopsis 3.7.1 7080 LUT 0.097µsn@
LSDE Xilinx 1000 618 FF 94.4MHz

Our Study Xilinx 1719 LUT 3.8µsn@
MMM XCV1000 1019 FF 101.86MHz
Ref [12] Handel-C Not Defined 50.68µsn@
SerialBit Xilinx4000XL 20MHz
Our Study Xilinx 1019 LUT 1.054µsn@
MMM Virtex5 1178 FF 368.05MHz

point addition, point doubling, and point multiplication op-
erations. We use the Montgomery systolic array architec-
ture for modular multiplication. Our architecture uses the
Montgomerymethod for modular multiplication because of
its implementation advantages. The systolic array architec-
ture makes the clock frequency independent of the bit length
of inputs. Also the circuit is expendable and reusable for
higher input values.
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