
Cache Based Remote Timing Attack on the AES
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Abstract. We introduce a new robust cache-based timing attack on
AES. We present experiments and concrete evidence that our attack
can be used to obtain secret keys of remote cryptosystems if the server
under attack runs on a multitasking or simultaneous multithreading sys-
tem with a large enough workload. This is an important difference to
recent cache-based timing attacks as these attacks either did not provide
any supporting experimental results indicating if they can be applied
remotely, or they are not realistically remote attacks.

Keywords: Cache Attack, Remote Attack, AES, Timing Analysis, Side
Channel Analysis.

1 Introduction

The implementations of cryptosystems may leak information through so-called
side channels due to the physical requirements of the device, e.g., power con-
sumption, electromagnetic emanation and/or execution time. In side-channel
attacks, the information obtained from one or more side-channels is used to
reveal the key of a cryptosystem. Power, electromagnetic, and timing attacks
are well-known types of side-channel attacks (c.f. [15,13,16,4,25]). Side-channel
analysis of computer systems has recently attracted increasing attention (for a
discussion see [3]). In this paper, we focus on a type of side channel cryptanalysis
that takes advantage of the information leaks through the cache architecture of
a CPU.

The feasibility of the cache based side channel attacks, abbreviated to “cache
attacks” from here on, was first mentioned by Kocher and then by Kelsey et
al. in [15,14]. D. Page described and simulated a theoretical cache attack on
DES [21]. Cache attacks were first implemented by Tsunoo et al. [27,26]. They
developed different attacks on various ciphers, including MISTY1 [26], DES and
Triple-DES [27]. The recent efforts have unleashed the actual power of cache
attacks [2,5,24,20,6,17,19,28,8].
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None of the mentioned papers, except [5], considered whether a remote cache
attack is feasible. Although Bernstein claimed that his attack could reveal a full
AES key remotely, his experiments were purely local [5] and he did not present
sufficient evidence to support those claims. Furthermore, a thorough analysis of
this attack showed that it could not compromise remote systems and could only
recover the key partially in a local attack [18]

Despite of [7] the vulnerability of software systems against remote timing
attacks was not taken into account until Brumley and Boneh performed an attack
on unprotected SSL implementations over a local network ([10]). An improved
version of this attack can be found in [1].

In this paper, we present a robust effective cache attack, which can be used
to compromise remote systems, on the AES implementation described in [11]
for 32-bit architectures. Although our basic principles can be used to develop
similar attacks on other implementations, we will only focus on the particular
implementation stated above.

Our paper is organized as follows: we will cover the basics of cache attacks in
the next section. In Section 3, we will introduce our new cache attack on the AES.
The results of the experiments will be presented along with the implementation
details in Section 4. The paper ends with concluding remarks.

2 Basics of a Cache Attack

A cache is a small and fast storage area used by the CPU to reduce the average
time to access main memory. It stores copies of the most frequently used data.1

When the processor needs to read a location in main memory, it first checks
to see if the data is already in the cache. If the data is already in the cache
(a cache hit), the processor immediately uses this data instead of accessing the
main memory, which has a longer latency than a cache. Otherwise (a cache miss),
the data is read from the memory and a copy of it is stored in the cache. The
minimum amount of data that can be read from the main memory into the cache
at once is called a cache line or a cache block, i.e., each cache miss causes a cache
block to be retrieved from a higher level memory.

Cache attacks exploit the cache hits and misses that occur during the en-
cryption / decryption process of the cryptosystem. Even if the same instructions
are executed for all (plaintext, cipherkey) pairs the cache behavior during the
execution may cause variations in the program execution time and power con-
sumption. Cache attacks try to exploit such variations to narrow the exhaustive
search space of secret keys.

Theoretical cache attacks were first described by Page in [21]. Page char-
acterized two types of cache attacks, namely trace-driven and time-driven. In
trace-driven attacks (e.g. [2,6,17]), the adversary is able to obtain a profile of
the cache activity of the cipher. This profile includes the outcomes of every
memory access the cipher issues in terms of cache hits and misses. Therefore,
1 Although it depends on the particular data replacement algorithm, this assumption

is true almost all the time for current processors.
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the adversary has the ability to observe (e.g.) if the 2nd access to a lookup table
yields a hit and can infer information about the lookup indices, which are key
dependent. This ability gives an adversary the opportunity to make inferences
about the secret key.

Time driven attacks, on the other hand, are less restrictive since they do
not rely on the ability of capturing the outcomes of individual memory accesses
[5,27,8]. The adversary is assumed to be able to observe the total execution time
of the cipher, i.e. the aggregate profile, which at most gives hint to an approx-
imative number of cache hits and misses, or to input-dependent correlations of
particular operations. Time-driven attacks are based on statistical inferences,
and therefore require much higher number of samples than trace-driven attacks.

We have recently seen another type of cache attacks that can be named as
“access-driven” attacks [20,24,19]. In these attacks, the adversary can determine
the cache sets that the cipher process modifies. Therefore, she can understand
which elements of the lookup tables or S-boxes are accessed by the cipher. Then,
the candidate keys that cause an access to unaccessed parts of the tables can be
eliminated.

3 A New Remote Cache Attack on AES

All of the proposed cache attacks, except [5], either assume that the cache does
not contain any data related to the encryption process prior to each encryption
or explicitly force the cache architecture to replace some of the cipher data.
The implementations of Tsunoo et al. accomplish the so-called ‘cache cleaning’
by loading some garbage data into the cache to clean it before each encryption
[27,26]. The need of cleaning the cache makes an attack impossible to reveal
information about the cryptosystems on remote machines, because the attacker
must have an access to the computer to perform cache cleaning. They did not
investigate if this attack could successfully recover the key without employing
explicit cache cleaning on certain platforms.

Attacks described in [20] replace the cipher data on the cache with some
garbage data by loading the content of a local array into the cache. Again,
the attacker needs an access to the target platform to perform these attacks.
Therefore, none of the mentioned studies could be considered as practical for
remote attacks over a network, unless the attacker is able to manipulate the
cache remotely.

In this paper, we show that it is possible to apply a cache attack without em-
ploying cache cleaning or explicitly aimed cache manipulations when the cipher
under the attack is running on a multitasking system, especially on a busy server.
In our experiments we run a dummy process simultaneously with the cipher
process. Our dummy process randomly issues memory accesses and eventually
causes the eviction of AES data from the cache. This should not be considered
as a form of intentional cache cleaning, because we use this dummy process only
to imitate a moderate workload on the server. In presence of different processes
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that run on the same machine with the cipher process, the memory accesses that
are issued by these processes automatically evict the AES data, i.e., cause the
same effect of our dummy process on the execution of the cipher.

Multitasking operating systems allow the execution of multiple processes on
the same computer, concurrently. In other words, each process is given permis-
sion to use the resources of the computer, not only the processor but also the
cache and other resources. Although it depends on the cache architecture and
the replacement policy, we can roughly say that the cache contains most recently
used data almost all the time. If an encryption process stalls for enough time, the
cipher data will completely be removed from the cache, in case of the presence
of other processes on the machine. In a simultaneous multithreading system, the
encryption process does not even have to stall. The data of the process, especially
parts of large tables, is replaced by other processes’ data on-the-fly, if there is
enough workload on the system.

The results of our experiments show that the attack can work in such a case
on a simultaneous multithreading environment. The reader should note that our
results also point the vulnerability of remote systems against Tsunoo’s attack
on DES, as well.

In this section we outline an example cache attack on AES with a key size of
128 bits. In our experiments we consider the 128-bit AES version with a block
length of 128 bits. Our attack can be adjusted to AES with key length 192 or
256 in a straight-forward manner (cf. Subsect. 3.4).

The basic attack consists of two different stages, considering table-lookups
from the first and second round, respectively. The basic attack may be considered
as an adaption of the ideas from the earlier cache attack works to a timing
attack on AES since similar equations are used. Our improved attack variant is
a completely novel approach. It employs a different decision strategy than the
basic one and is much more efficient. It does not have different parts and falls
into sixteen independent 8-bit guessing problems.

The differences of our approaches from the earlier works are the followings.
First of all, we exploit the internal collisions, i.e., the collisions between different
table lookups of the cipher. Some of the earlier works (e.g. [20,19,24,6]) exploits
the cache collisions between the memory accesses of the cipher and another
process. Exploiting such external collisions mandates the use of explicit local
cache manipulations by (e.g.) having access to the target machine and reading
a local data structure. This necessity makes these attacks unable to compromise
remote systems. On the other hand, taking advantage of internal collisions re-
moves this necessity and enables one to devise remote attacks as will be shown
in this paper. The idea of using internal collisions is employed in some of the
previous works, e.g. in [26,27,17]. The earlier timing attacks that rely on internal
collisions perform the so-called cache cleaning, which is also a form of explicit
local cache manipulations. These works did not realize the possibility of auto-
matic cache evictions due to the workload on the system, and therefore could
not show the feasibility of remote attacks.
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Fig. 1. Two different accesses to the same table

3.1 Basic Attack Model

We will use Figure 1 to explain the basic attack model. Assume there are two
accesses to the same table. Let Pi and Ki be the ith byte of the plaintext and
cipherkey, respectively. In this paper, each byte is considered to be either an
8-digit radix-2 number ∈ {0, 1}8, that can be added in GF (28) using a bitwise
exclusive-or operation, or an integer in [0, 255] that can be used as an index.
For the rest of this section, we assume that each plaintext consists of a single
16-byte message block.

The structure shown in the figure uses different bytes of the plaintext and the
cipherkey as inputs to the function that computes the index of each of these two
accesses. If both of them access to the same element of the table the latter should
find the target data in the cache, resulting a cache hit; which should reduce the
execution time. Then the key byte difference K1 ⊕ K2 follows immediately from
the values of plaintext bytes P1 and P2 using the equation

P1 ⊕ K1 = P2 ⊕ K2 ⇒ P1 ⊕ P2 = K1 ⊕ K2 .

In trace-driven attacks, we assume that the adversary can directly understand
if the latter access results a hit, thus can directly obtain K1 ⊕ K2. This goal
is more complicated in time-driven attacks. We need to use a large sample to
realize an accurate statistics of the execution. When sampling different plaintext
pairs with the corresponding execution time we would expect that the plaintext
byte difference P1 ⊕P2 that causes the shortest average execution time gives the
correct key byte difference, assuming a cache hit decreases the overall execution
time.

However, in a real environment the situation is more complicated. Even if
the latter access is to a different element other than the target of the former
access, a cache hit may still occur. Any cache miss results the transfer of an
entire cache line, not only one element, from the main memory. Therefore, if the
former access has a target, which lies in the same cache line of the previously
accessed data, a cache hit will occur. In that case, we can still obtain the key
byte difference partially as follows:

Let δ be the number of bytes in a cache line and assume that each element
of the table is k bytes long. Under this situation, there are δ/k elements in each
line, which means any access to a specific element will map to the same line with



276 O. Acıiçmez, W. Schindler, and Ç.K. Koç

(δ/k−1) different other accesses. If two different accesses to the same array read
the same cache line, the most significant parts of their indices, i.e., all of the
bits except the last � = log2(δ/k) bits, must be identical.2 Using this fact, we
can find the difference of the most significant part of the key bytes using the
equation

〈P1〉 ⊕ 〈P2〉 = 〈K1〉 ⊕ 〈K2〉 ,

where 〈A〉 stands for the most significant (8 − �) bits of A.
Indices of table lookups are driven by the outputs of usually more complex

functions of the plaintext and the cipherkey than only bitwise exclusive-or of
their certain bytes. The structure of these functions determines the performance
of the attack, i.e., the amount of reduction in the exhaustive search space. The
basic idea presented above can be adapted to any such function in order to
develop successful attacks.

The attack model discussed so far is partially correct, except the lack of count-
ing the fact that two different accesses to the same cache line may even increase
the overall execution time. We realized during our experimentation that an inter-
nal collision, i.e. cache hit, at a particular AES access either shortens or lenghtens
the overall execution time. The latter phenomenon may occur if a cache hit oc-
curs from a logical point of view but the respective cache line has not already
been loaded, inducing double work. Thus, if we gather a sample of messages and
each of these messages generates a cache hit during the same access, then the
execution time distribution of this sample will be significantly different than that
of a random sample. We consider this fact to develop our attacks on the AES.

3.2 First Round Attack

The implementation we analyze is described in [11] and it is widely used on 32-
bit architectures. To speed up encrytion all of the component functions of AES,
except AddRoundKey, are combined into lookup tables and the rounds turn
to be composed of table lookups and bitwise exclusive-or operations. The five
lookup tables T0, T1, T2, T3, T4 employed in this implementation are generated
from the actual AES S-box value as the following way:

T0[x] = (2 • s(x), s(x), s(x), 3 • s(x)), T1[x] = (3 • s(x), 2 • s(x), s(x), s(x)),

T2[x] = (s(x), 3 • s(x), 2 • s(x), s(x)), T3[x] = (s(x), s(x), 3 • s(x), 2 • s(x)),

T4[x] = (s(x), s(x), s(x), s(x)) ,

where s(x) and • stand for the result of an AES S-box lookup for the input
value x and the finite field multiplication in GF (28) as it is realized in AES,
respectively. The round computations, except in the last round, are in the form:

(S(r+1)
(4∗i) , S

(r+1)
(4∗i+1), S

(r+1)
(4∗i+2), S

(r+1)
(4∗i+3)) :=(RKr

(4∗i), RKr
(4∗i+1), RKr

(4∗i+2), RKr
(4∗i+3)) ⊕

2 We assume that lookup tables are aligned in the memory, which is the case most of
the time. If they are not aligned, this will indeed increase the performance of the
attack as mentioned in [20].
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T0[Sr
(4∗i)] ⊕ T1[Sr

(4∗i+5 mod 16)] ⊕ T2[Sr
(4∗i+10 mod 16)] ⊕ T3[Sr

(4∗i+15 mod 16)] ,

where Sr
i is the byte i of intermediate state value that becomes the input of

round r, RKr
i is the ith byte of the rth round key and i ∈ {0, .., 3}.

The first 4 references to the first table, T0, are:

P0 ⊕ K0, P4 ⊕ K4, P8 ⊕ K8, P12 ⊕ K12 .

If any two of these four references are forced to map to the same cache line for
a sample of plaintext then we know that this will affect the average execution
time. For example, if we assign the value 〈P0 ⊕ K0 ⊕ K4〉 to 〈P4〉, i.e.,

〈P4〉 = 〈P0 ⊕ K0 ⊕ K4〉

for a large sample of plaintexts the timing characteristics of this sample will be
different than that of a randomly chosen sample. We can use this fact to guess
the correct key byte difference 〈K0 ⊕ K4〉.

Using the same idea we can find all key byte differences εi,j = 〈Ki ⊕Kj〉 with
i, j ∈ {0, 4, 8, 12}. For properly selected indices (i1, j1), (i2, j2), (i3, j3), i.e. if the
GF (2)-linear span of {Ki1 ⊕ Kj1 , Ki2 ⊕ Kj2 , Ki3 ⊕ Kj3} contains all six XOR
sums K0 ⊕ K4, K0 ⊕ K8, . . . , K8 ⊕ K12, then each εi,j follows immediately from
εi1,j1 , εi2,j2 and εi3,j3 . We can further reduce the search space by considering
the accesses to other three tables T1, T2 and T3. In general, we can obtain
〈Ki ⊕K4∗j+i〉 for i, j ∈ {0, 1, 2, 3}. Since (8− �) is the size of the most significant
part of a table entry in terms of the number of bits the first round attack allows
us to reduce the search space by 12 ∗ (8 − �) bits. The parameter � depends on
the cache architecture. For � = 0, which constitutes the theoretical lower bound,
the search space for a 128 bit key becomes only 32 bits. For � = 4 the search
space is reduced by 48 bits yielding an 80 bit problem.

On widely used processors the search space typically reduces to 56, 68, or 80
bits for 128-bit keys. In the environment where we performed our experiments
the cache line size of the L1 cache is 64 bytes, i.e. the most significant part of a
key byte difference is 4 bits long. In other words, we can only obtain the first 4
bits of Ki ⊕ K4∗j+i and the remaining 4 bits have to be searched exhaustively
unless we use a second round attack.

3.3 Second Round Attack – Basic Variant

Using the guesses from the first round a similar guessing procedure can be ap-
plied in the second round to obtain the remaining key bits. We briefly explain
an approach that exploits only accesses to T0, i.e., the first table. To simplify
notation we set Δi := Pi ⊕ Ki in the remainder of this section. In the second
round the encryption accesses four times to T0, namely to obtain the values

2 • s(Δ8) ⊕ 3 • s(Δ13) ⊕ s(Δ2) ⊕ s(Δ7) ⊕ s(K13) ⊕ K0 ⊕ K4 ⊕ K8 ⊕ 0x01 (1)

2 • s(Δ0) ⊕ 3 • s(Δ5) ⊕ s(Δ10) ⊕ s(Δ15) ⊕ s(K13) ⊕ K0 ⊕ 0x01 (2)

2 • s(Δ4) ⊕ 3 • s(Δ9) ⊕ s(Δ14) ⊕ s(Δ3) ⊕ s(K13) ⊕ K0 ⊕ K4 ⊕ 0x01 (3)

2 • s(Δ12) ⊕ 3 • s(Δ1) ⊕ s(Δ6) ⊕ s(Δ11) ⊕ s(K13) ⊕ K0 ⊕ K4 ⊕ K8 ⊕ K12 ⊕ 0x01(4)
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where s(x) and • stand for the result of an AES S-box lookup for the input
value x and the finite field multiplication in GF (28) as it is realized in AES,
respectively. If the first access (P0 ⊕ K0) touches the same cache line as (1) for
each plaintext within a sample, i.e. if

〈P0〉 = 〈2•s(Δ8) ⊕ 3•s(Δ13) ⊕ s(Δ2) ⊕ s(Δ7) ⊕ s(K13) ⊕ K4 ⊕ K8 ⊕ 0x01〉 (5)

the expected average execution time will be different than for a randomly chosen
sample. If we assume that the value 〈K4 ⊕ K8〉 has correctly been guessed within
the first round attack this suggests the following procedure.

1. Phase: Obtain a sample of N many (plaintext, execution time) pairs.
2. Phase: Divide the entity of all (plaintext, execution time) pairs into 232 (over-

lapping) subsets, one set for each candidate (˜K2, ˜K7, ˜K8, ˜K13) value. Put
each plaintext into all sets that correspond to candidates (˜K2, ˜K7, ˜K8, ˜K13)
that satisfy the above equation. Note that a particular plaintext should be
contained in about N/28−� different subsets.

3. Phase: Calculate the timing characteristics of each set, i.e., the average ex-
ecution time in our case. Compute the absolute difference between each
average and the average execution time of the entire sample. There will be
a total of 24·8 timing differences, each from a different absolute value of
(˜K2, ˜K7, ˜K8, ˜K13). The set with the largest difference should point to the
correct values for these 4 bytes.

Hence, we can search through all candidates for (K2, K7, K8, K13) ∈ GF (2)32 to
guess the true values. Applying the same idea to (2) to (4) we can recover the
full AES key. Note that in each of the consecutive steps only 4 · 4 = 16 key bits
have to be guessed since Ki and the most significant bits from some other Kj

follow from the first step and εij from the first round attack (cf. Sect. 3.2) where
i is a suitable index in {2, 7, 8, 13}.

The bottleneck is clearly the first step since one has to distinguish between
232 key hypotheses rather than between 216. Experimental results are given in
Sect 4. In the next subsection we introduce a more efficient variant that saves
both samples and computations.

3.4 A More Efficient, Universally Applicable Attack

In the previous subsection we explained a second round attack where 32, resp. 16,
key bits have to be guessed simultaneously. In this section we introduce another
approach that allows independent search for single key bytes. It is universally
applicable in the sense that it could also be applied in any subsequent round,
e.g. to attack AES with 256 bit keys.

We explain our idea at (1). Our goal is to guess key byte K8. Recall that access
to the same cache line as for (P0⊕K0) is required in the second round iff (5) holds.
If we fix the four plaintext bytes P0, P2, P7, and P13 then (5) simplifies to

〈c〉 = 〈2 • s(Δ8)〉 (6)
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with an unknown constant c = c(K0, K2, K4, K7, K8, K13, P0, P2, P7, P13). We
observe encryptions with randomly selected plaintext bytes Pi for i /∈ {0, 2, 7, 13}
and evaluate the timing characeristics with regard to all 256 possible values of
P8. For the most relevant case, i.e. � = 4, there are 16 plaintext bytes (2� in
the general case) that yield the correct (but unknown) value < 2 • s(Δ8) > that
meets (5). Ideally, with regard to the timing characteristics, these 16 plaintext
bytes should be ranked first, pointing at the true subkey K8; i.e. to a key byte
that gives identical right-hand sides < 2 • s(Δ8) > for all these 16 plaintext
bytes. The ranking is done similar as in Subsect. 3.2. To rank the 256 P8-bytes
one calculates for each subset with equal P8 values the absolute difference of
its average execution time with the average execution time of all samples. The
set with the highest difference is ranked first and so on. In a practical attack
our decision rule says that we decide for that key byte candidate ˜K8 for which
a maximum number of the t (e.g. t = 16) top-ranked plaintext bytes yield
identical 〈2 • s(Δ8)〉 values. If the decision rule does not clearly point to one
subkey candidate, we may perform the same attack with a second plaintext P ′

0
for which 〈P0〉 �= 〈P ′

0〉 while we keep P2, P7, P13 fixed (changing 〈c〉 to 〈c′〉 :=
〈c〉 ⊕ 〈P0 ⊕ P ′

0〉). Applying the same decision rule as above, we obtain a second
ranking of the subkey candidates.

Clearly, if P8 and P ′
8 meet (6) for P0 and P ′

0, resp., then

〈P0 ⊕ P ′
0〉 = 〈2 • s(P8 ⊕ K8)〉 ⊕ 〈2 • s(P ′

8 ⊕ K8)〉. (7)

Equation (7) may be used as a control equation for probable subkey candidates
˜K8. From the ranking of ˜P8 and ˜P ′

8, we derive an order for the pairs ( ˜P8, ˜P ′
8),

e.g. by adding the ranks of the components or their absolute distances from the
respective means. For highly ranked pairs ( ˜P8, ˜P ′

8) we substitute ( ˜P8, ˜P ′
8,

˜k) into
control equation (7) where ˜k is a probable subkey candidate from the ‘elemen-
tary’ attacks.

We note that the attack described above can be applied to exploit the relation
between any two table-lookups. By reordering a type (5)-equation one obtains
an equation of type (6) whose right-hand side depends only on one key byte (to
be guessed) and one plaintext byte. The plaintext bytes that affect the left-hand
side are kept constant during the attack. The whole key could be recovered by 16
independent one-key byte guessing problems. We mention that the (less costly)
basic first round attacks might be used to check the guessed subkey candidates
˜K0, . . . , ˜K15.

Comparison with the Basic Second Round Attack from Subsect 3.3.
For sample size N the ’bottleneck’ of the basic second round attack, the 32
bit guessing step, requires the computation of the average execution times of 232

sample subsets of size ≈ N/28−�. In contrast, each of the 16 runs of the improved
attack variant only requires the computation of the average execution times of
256 subsets of size ≈ NI/256 (with NI denoting the sample size for an individual
guessing problem) and sorting two lists with 256 elements (plaintexts and key
byte candidates). Even more important, 16NI will turn out to be clearly smaller
than N (cf. Sect. 4).
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The only drawback of the improvedvariant is that it is a chosen-input attack, i.e.,
it requires an active role of the adversary. In contrast, the basic variant explained
in the previous section is principally a known-plaintext attack, which means an
adversary does not have to actively interfere with the execution of the encryp-
tion process, i.e., the attack can be carried out by monitoring the traffic of the
encryption process. However, this is only true for the (less important) so-called
innerprocess attacks (cf. Section 4 for details). For ‘real’ attacks (interprocess and
remote attacks) the basic variant is performed as a chosen-input attack, too, since
the attacker needs to choose the plaintext to be encrypted as the concatenation of
several identical 128 bit strings in order to increase the signal-to-noise ratio.

4 Experimental Details and Results

We performed two types of experimental attacks that we call innerprocess and
interprocess attacks to test the validity of our attack variants. In innerprocess
attack we generated a random single-block of messages and measured their en-
cryption times under the same key. The encryption was just a function that is
called by the application to process a message. The execution time of the cryp-
tosystem was obtained by calculating the difference of the time just before the
function call and immediately after the function return. Therefore, there was
minimum noise and the execution time was measured almost exactly.

For the second part of the experiments, i.e., interprocess attack, we imple-
mented a simple TCP server and a client program that exchange ASCII strings
during the attack. The server reads the queries sent by the client, and sends a
response after encrypting each of them. The client measures the time between
sending a message and receiving the reply. These measurements were used to
guess the secret key. The server and client applications run on the same machine
in this attack. There was no transmission delay in the time measurements but
network stack delays were present.

Brumley and Boneh pointed out that a real remote attack over a network was
principally able to break a remote cipher, when the interprocess versionof the same
attack worked successfully. Furthermore, their experiments also showed that their
actual remote attack required roughly the same number of samples used in the
interprocess version [10]. Therefore, we only performed interprocess experiments.
Applying an interprocess attack successfully is a sufficient evidence to claim the
actual remote version would also work with (most likely) a larger sample size.

We performed our attack against OpenSSL version 0.9.7e. All of the exper-
iments were run on a 3.06 GHz. HT-enabled Xeon machine with a Linux op-
erating system. The source code was compiled using the gcc compiler version
3.2.3 with default options. We used random plaintexts generated by rand() and
srand() functions available in the standard C library. The current time is fed
into srand() function, serving as seed for the pseudorandom number generator.
We measured time in terms of clock cycles using the cycle counter.

For the experiments of innerprocess attack, we loaded 8 KB garbage data into
the L1 cache before each encryption to remove all AES data from the first level
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cache. We did not employ this type of cache cleaning during the experiments of
interprocess attack. Instead, we wrote a simple dummy program that randomly
accesses an 8 KB array and run this program simultaneously with the server in
order to imitate the effect of a workload on the computer.

We used two parameters in our experiments.

1. Sample Size (N): This is the number of different (plaintext, execution time)
pairs collected during the first phase of the attacks. We have to use a large
enough sample of queries to obtain accurate statistical characteristic of the
system. However, a very large sample size causes unnecessary increase in the
cost of the attack.

2. Message Length (L): This is the number of message blocks in each query.
We concatenated a single random block L many times with one another to
form the actual query. L was 1 during the innerprocess attack, i.e., each
query was a single block, whereas it was 1024 in the interprocess attack.
This parameter is used to increase the signal-to-noise ratio in the case of
having network delays in the measurements.

We performed our attacks on the variant of AES that has 128-bit key and
block sizes. The cache line size of L1 cache is 64 bytes, which makes � = 4
bits. The cipher was run on ECB mode. In our experiments, we performed all
second round guessing problems for the basic attack with only 212 different key
hypotheses, one of them being the correct key combination. Our intention was
to demonstrate the general principle but to save many encryptions. In this way,
we reduced the complexity of ‘bottleneck’ exhaustive search by even more than
a factor of 220 since less samples are sufficient for the reduced search space.

For the innerprocess attack, collecting 218 samples was enough to find the
correct value of the key. Since we only considered 212 different key hypotheses in
second round guessing problems, the required sample size would be more than
218 for a real scale innerprocess attack. In fact, statistical calculations suggest
that 4∗218 samples should be sufficient for 232 key hypotheses although in a strict
sense (13) only guarantees an error probability of at most 2ε/(1−c)−ε2/(1−c)2 >
2ε − ε2 (cf. Example 1 in the appendix). (The right-hand side denotes the error
probability for the reduced search space while c is unknown.) However, (11) is
a (pessimistic) lower bound we may expect that the true error probability is
indeed significantly smaller, possibly after increasing the sample size somewhat.

The key experiment is the interprocess attack, which shows the vulnerability
of remote servers against such cache attacks. In our experiments, we collected
50 million random but known samples and applied our attack on this sample
set. This sample size was clearly sufficient to reveal the correct key value among
212 different key hypotheses. Again, the same heuristic arguments indicate the
sufficiency of 200 million samples in a real-scale attack. We also estimated the
number of required samples in a remote attack over a local network. Rough sta-
tistical considerations indicate that increasing the sample size of the interprocess
attack by a factor of less than 6 should be sufficient to successfully apply the
attack on a remote server.
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We tested our improved variant on the same platform with the same settings.
The only difference was the set of the plaintexts sent to the server. We only
performed interprocess attack with this new decision strategy. Our experimental
results indicate a clear improvement over the basic attack. We could recover a
full 128-bit AES key by encrypting slightly more than 6.5 million samples in
average per each of the 16 guessing problems and a total of 106 million queries,
each containing L = 1024 message blocks. Recall the further advantage of the
improved variant, namely the much lower analysis costs.

We want to mention that all of these results correspond to the minimum
number of samples from which we got the correct decision from our decision
strategy. In a real-life-attack an adversary clearly has to collect more samples
to be confident on her decisions in a real attack. More sophisticated stochastic
models that are tailored to specific cache strategies certainly will improve the
efficiency of our attack.

Our client-server model does not perfectly fit into the behavior of an actual
security application. In reality, encrypting/decrypting parties do not send
responses immediately and perform extra operations, besides encryption and de-
cryption. However, this fact does not nullify our client-server model. Although,
the less signal-to-noise ratio in actual attacks increases the cost, it does not change
the principle feasibility of our attacks. We want to mention that timing variations
caused by extra operations decrease the signal-to-noise ratio. If a security appli-
cation performs the same operations for each processed message, we expect the
“extra timing variations” to be minimal, in which case the decrease in the signal-
to-noise ratio and thus the increase in the cost of the attack also remains small.

5 Conclusion

We have presented a new cache-based timing attack on AES software imple-
mentations. Our experiments indicate that cache attacks can be used to extract
secret keys of remote systems if the system under attack runs on a server with a
multitasking or multithreading system and a large enough workload. Although
a large number of measurements are required to successfully perform a remote
cache attack, it is feasible in principle. In this regard, we would like to point the
feasibility of such cache attacks to the public, and recommend implementing ap-
propriate countermeasures. Several countermeasures [21,5,20,22,23,9] have been
proposed to prevent possible vulnerabilities and develop more secure systems.
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CHES’01, Ç. K. Koç, D. Naccache, and C. Paar, editors, 251-261, Springer,
LNCS 2162, Berlin 2001.

14. J. Kelsey, B. Schneier, D. Wagner, C. Hall. Side Channel Cryptanalysis of Product
Ciphers. Journal of Computer Security, vol.8, 141-158, 2000.

15. P. C. Kocher. Timing Attacks on Implementations of Diffie–Hellman, RSA,
DSS, and Other Systems. CRYPTO ’96, N. Koblitz, editor, 104-113, Springer,
LNCS 1109, Berlin 1996.

16. P. C. Kocher, J. Jaffe, B. Jun. Differential Power Analysis. CRYPTO ’99, M.
Wiener, editor, 388-397, Springer, LNCS 1666, Berlin 1999.

17. C. Lauradoux. Collision attacks on processors with cache and countermeasures.
WEWoRC’05, C. Wolf, S. Lucks, and P.-W. Yau, editors, 76-85, Kl̈len, LNI P-74,
Bonn 2005.

18. M. Neve, J.-P. Seifert, Z. Wang. A refined look at Bernstein’s AES side-channel
analysis. ASIA CCS’06, 369-369, ACM Press, 2006.

19. M. Neve and J.-P. Seifert. Advances on Access-driven Cache Attacks on AES.
SAC’06, E. Biham, A. Youssef, editors, to appear.

20. D. A. Osvik, A. Shamir, and E. Tromer. Cache Attacks and Countermeasures:
The Case of AES. CT-RSA’06, D. Pointcheval, editor, 1-20, Springer, LNCS 3860,
Berlin 2006.

21. D. Page. Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel. Tech-
nical Report CSTR-02-003, Department of Computer Science, University of Bristol,
June 2002.

22. D. Page. Defending Against Cache Based Side-Channel Attacks. Technical Report.
Department of Computer Science, University of Bristol, 2003.
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Appendix: Scaling the Sample Size N

In order to save measurements we performed our practical experiments to the
basic second round attack from Subsect. 3.3 with a reduced key space. Clearly,
to maintain the success probability for the full subkey space the sample size N
must be increased to N ′ since the adversary has to distinguish between more
admissible alternatives. In this section we estimate the ratio r := N ′/N .

We interpret the measured average execution times for the particular subkey
candidates as realizations of normally (Gaussian) distributed random variables,
denoted by Y (related to the correct subkey) and X1, . . . , Xm−1 (related to the
wrong subkey candidates) for the reduced subkey space, resp. X1, . . . , Xm′−1
when all possible subkeys are admissible. We may assume Y ∼ N(μA, σ2

A) while
Xj ∼ N(μB , σ2

B) for j ≤ m−1, resp. for j ≤ m′ −1, with unknown expectations
μA and μB and variances σ2

A and σ2
B . Clearly, μA �= μB since our attack exploits

differences of the average execution times. Since it only exploits the relation
between two table lookups σ2

A ≈ σ2
B seems to be reasonable, the variances clearly

depending on N . W.l.o.g. we may assume μA > μB . We point out that E(X1 +
... + Xm−1 + Y )/m ≈ μB unless m is very small.

Prob(correct guess)≈Prob(|Y − μB| > max{|X1 − μB|, . . . , |Xm−1 − μB |})
= Prob(min{X1, ...., Xm−1} > μB − (Y − μB), max{X1, ..., Xm−1} < Y )
≈ Prob(max{X1, ..., Xm−1} < Y )2 (8)

Unless m is very small the ≈ sign should essentially be “=”. If the random
variables Y, X1, . . . , Xm−1 were independent we had

Prob(max{X1, ..., Xm−1} ≤ t) =
m−1
∏

j=1

Prob(Xj ≤ t) = (9)

= Φ((t − μB)/σB)m−1



Cache Based Remote Timing Attack on the AES 285

where Φ denotes the cumulative distribution function of the standard normal
distribution. From (9) one immediately deduces

Prob(max{X1, ..., Xm−1} < Y ) ≈
∫ ∞

−∞
Φ((z − μB)/σB)m−1fA(z)dz (10)

where Y has density fA. In the context of Subsect. 3.3 the random variables
Y, X1, . . . , Xm−1 are yet dependent. However, for different subkey candidates ki

and kj the size of the intersection of the respective subsets is small compared
to the size of these subsets themselves. Hence we may hope that the influence
of the correlation between Xi and Xj is negligible. Under this asumption (10)
provides a concrete formula for the probability for a true guess. However, this
formula cannot be evaluated in practice since μA, μB and σ2

A ≈ σ2
B are unknown.

Instead, we prove useful Lemma.

Lemma 1. (i) Let f denote a probability density, while 0 ≤ g, h ≤ 1 are inte-
grable functions and Mc := {y : g(y) ≤ c}. Assume further that h ≥ g on R\Mc.
Then

∫

h(z)f(z)dz ≥ 1 − ε

1 − c
if

∫

g(z)f(z)dz = 1 − ε (11)

(ii) Let s, u, b > 1. Then there exists a unique y0 > 0 with Φ(y0s)ub = Φ(y0)b. In
particular, Φ(ys)ub > Φ(y)b iff y > y0.

Proof. Assertion (i) follows immediately from

(1 − c)
�

Mc

f(z)dz ≤
�

Mc

(1 − g(z))f(z)dz ≤
�

(1 − g(z))f(z)dz = ε

and hence�
h(z)f(z) dz ≥ 0 +

�
R\Mc

g(z)f(z) dz = (1 − ε) −
�

Mc

g(z)f(z)

≥ (1 − ε) − c

�
Mc

f(z) dz ≥ 1 − ε − cε

1 − c
= 1 − ε

1 − c
.

Since Φ(ys)ub/Φ(y)b = (Φ(ys)u/Φ(y))b we may assume b = 1 in the remainder
w.l.o.g. Clearly, Φ(ys)u < Φ(y) for y < 0. Hence we concentrate to the case y ≥ 0.
In particular, log(1 − x) = −x + O(x2) implies

ψ(y) := log (Φ(ys)u/Φ(y)) = u log(Φ(ys)) − log(Φ(y))

= u log(1 − (1 − Φ(ys))) − log(1 − (1 − Φ(y)))

= −u (1 − Φ(ys)) + (1 − Φ(y)) + O
�
(1 − Φ(y))2

�
≥ 1√

2π

�
1
y

− 1
y3

�
e−y2/2 − 1√

2π

u

ys

�
e−y2/2

�s2

+ O

��
1
y

e−y2/2
�2
	

> 0 for sufficiently large y, and lim
y→∞

ψ(y) = 0. (12)

We note that the last assertion follows immediately from the definition of ψ
while the ’≥’ sign is a consequence from a well-known inequality of the tail of
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1 − Φ (see, e.g., [12], Chap. VII, 175 (1.8)). Since ψ is continuous and ψ(0) =
log(0.5u−1) < 0 there exists a minimal y0 > 0 with ψ(y0) = 0. For any y1 ∈ {y ≥
0 | ψ′(y) = 0} the second derivative simplifies to ψ′′(y1) = t(y1)Φ′(y1)/Φ(y1)
with t(x) := (1 − s2)x + (1 − 1/u)Φ′(x)/Φ(x). (Note that Φ′′(ys) = −ysΦ′(ys)
and Φ′′(y) = −yΦ′(y).) Assume that ψ(y00) = 0 for any y00 > y0. As ψ(0) < 0
and ψ(y0) = ψ(y00) = 0 the function ψ attains a local maximum in some ym ∈
[0, y00). Since t: [0, ∞) → R is strictly monotonously decreasing ψ cannot attain
a local minimum in (ym, ∞) (with ψ(·) ≤ 0 = ψ(y00)) which contradicts (12).
This proves the uniqueness of y0 and completes the proof of (ii).

Our goal is to apply Lemma 1 to the right-hand side of (10). We set u :=
(m′ − 1)/(m − 1), b := 1 and s :=

√
r with r := N ′/N . Further, f(z) := fA(z),

g(z) := (Φ((z − μB)/σB))m−1 and h(z) := (Φ(
√

r(z − μB)/σB))u(m−1). By (ii)
we have c = Φ((z0 − μB)/σB)m−1 and Mc = (∞, z0] with g(z0) = h(z0). Lemma
1 and (8) imply

[

Prob(correct guess for (m, N)) = (1 − ε)2
]

⇒ (13)
[

Prob(correct guess for (m′, N ′ = rN)) ≥
(

1 − ε

1 − c

)2
]

providing a lower probability bound for a correct guess in the full key space
attack. Note that μA, μB, σ2

A ≈ σ2
B , N, r determine ε, c and z0 which are yet

unknown in real attacks since μA and μB are unknown. Example 1 gives an idea
of the magnitude of r.

Example 1. Let m = 212, m′ = 232, and y0 := (z0 − μB)/σB = Φ−1(c1/(m−1)).
If c = 0.5 (resp., if c = 100/101) the number r = N ′/N = 3.09 (resp., r = 3.85)
gives Φ(y0

√
r)u(m−1) = Φ(y0)m−1 = 0.5 (resp., = 100/101).
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