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ABSTRACT

This paper presents a scalable Elliptic Curve Crypto-Processor (ECCP) architecture for computing the point
multiplication for curves defined over the binary extension fields (GF(2™)). This processor computes modular
inverse and Montgomery modular multiplication using a new efficient algorithm. The scalability feature of the
proposed crypto-processor allows a fixed-area datapath to handle operands of any size. Also, the word size
of the datapath can be adjusted to meet the area and performance requirements. On the other hand, the
processor is reconfigurable in the sense that the user has the ability to choose the value of the field parameter
(n). Experimental results show that the proposed crypto-processor is competitive with many other previous
designs.

Keywords: Processor Architecture, Scalable Hardware, Division/Multiplication Algorithm, Cryptography, Ga-
lois Field Arithmetic, Point Addition.

1. INTRODUCTION

Recently, there are many factors that force the need for secure communication. Among these factors are the
continuous growth of the Internet, the electronic systems connection and the E-commerce transactions. The
public-key Cryptography is widely used to ensure secure communication between different hosts. There are
many common public-key cryptosystems such as ElGamal! and RSA.?2 1In this paper, we will focus on the
public-key Elliptic Curve Cryptosystem (ECC).

ECC was introduced by Miler? and Koblitz.* The mathematical problem in which ECC is based, is more
difficult to solve than the one used in traditional public key algorithms and thus, the same level of security can
be obtained by using ECC with much smaller key sizes than traditional algorithms. For example a key size of
200 bits in an ECC has security level equivalent to 1400-bit RSA system.®

In this paper we present a scalable Elliptic Curve Crypto-Processor (ECCP) architecture to compute the
point multiplication for the curves defined in the binary extension fields GF'(2™). The core arithmetic operation
to compute the point multiplication is the modular multiplication. Montgomery Multiplication (MM) algorithm®
is an efficient way to compute modular multiplication. Many multiplier designs based in the MM algorithm were
proposed.” ™  Also, the modular division and modular inverse are used to convert field elements between the
projective and affine coordinates. These operations are very time consuming and increase the critical path delay
of a design that implements them.

The speed of the ECCP depends on how fast the arithmetic operations can be executed. The proposed ECCP
architecture uses a simplified version of an algorithm (called UDMA) that is able to compute modular division
and Montgomery modular multiplication in GF'(2") and GF(p) (the algorithm is used for GF(2") only). This
algorithm was already proposed and proved to be correct in another work.'® The proposed hardware architecture
supports all the computation steps in the algorithm.

The scalability feature of the proposed crypto-processor allows the adjustment of the word size used in the
datapath to meet area and performance requirements. On the other hand, the processor allows the user to choose
the value of the field parameter (n).



The following Section presents some mathematical concepts related to the ECC. The top level architecture
of the proposed processor and its general operation are proposed in Section 3. The algorithm used to compute
modular division and Montgomery modular multiplication is described in Section 4. The hardware description
of the main components of the ECCP is presented in Section 5. The experimental results and conclusions are
shown in Sections 6 and 7.

2. MATHEMATICAL BACKGROUND AND NOTATION

This section provides a brief mathematical overview of the Elliptic Curve Cryptosystem (ECC). More details
can be found in the literature.” !

Data in an ECC is represented as points on an elliptic curve, so called because they arose historically from the
problem of computing the solutions for an equation of an ellipse. These curves have special characteristics and
provide the base for particular arithmetic operations. In cryptography, we are interested in the elliptic curves
defined over finite fields. In other words, the coefficients of the defining equation (F'(x,y) = 0) are elements of
GF(q), and the points on the curve are of the form P = (x,y), where x and y are elements of GF(q) that satisfy
the equation. In addition, a point at infinity'? is defined. In this paper, we consider the elliptic curves defined
over GF(2"). This field has the advantage that the field elements are represented as n-bit values.

2.1. Arithmetic Operations on Elliptic Curve

The core operation on ECC is the scalar point multiplication which consists of a certain number of point additions.
When a point P defined on the curve is added to itself k times, it is very difficult to find what was P without
knowing k. That is the characteristic that provides security to ECC.

Q=kP=P+P+..+P (1)
—

k times

The elliptic curves defined over GF(2") satisfy the equation:

E:y?*+ay=2®+ax®+b (2)
where a,b € GF(2") and b # 0. The addition law for two points in affine coordinates involves multiplication,
division and squaring in the underlying finite field, as follows:

As mentioned earlier, division is an expensive operation increases the area and limits the speed of an efficient
hardware implementation for ECC. The proposed design uses a hardware algorithm that integrates the multipli-
cation and division/inverse operations, in such a way that the multiplication speed is not significantly impacted.
Such feature is important because multiplication is used most of the time.

Let P = (z1,y1) and Py = (x9,y2) be two points defined on the curve, then P; = (z3,y3) = Py + Py is
defined when P; # P; as:

Y1+ Yo
a=>"—=
1 + 2o
T3 =’ ta+tx +r2ta
ys = (z1 + x3)a + 23 + 11
and when P; = P5 (point doubling) as:

U
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ys = (v1 + x3)a + x3 + 41
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Figure 1. Top Level Diagram of the Elliptic Curve Crypto-Processor (ECCP)

3. PROCESSOR ARCHITECTURE - TOP LEVEL

The top level diagram of the Elliptic Curve Crypto-Processor (ECCP) is shown in Figure 1. Its components are
the Arithmetic Unit (AU) data section and control, and the main control block. The main control block interacts
with the user to get the scalar multiple (k) and the point to be multiplied (P), passing them to the AU.

The AU control block provides the necessary control signals to the AU data section in order to accomplish
computing kP. The Arithmetic Unit is the place were all the field computations are performed. It consists of a
datapath and a register file, as shown in the Figure. The datapath logic performs basic arithmetic operations and
provides needed dataflow paths to compute modular division and Montgomery multiplication using the Unified
modular Division and Multiplication Algorithm (UDMA)!® which will be discussed later. More details about
the main components of the ECCP are provided in the following Sections.

The idea of scalable architecture was introduced for Montgomery multiplication.” '3 The objective of a

scalable architecture is to be able to handle operands of various sizes by repetitive use of the same hardware
core. Therefore, the scalable approach eliminates the fixed precision constraint imposed on other specialized
designs.'* 1> This characteristic is important for a flexible crypto-processor architecture.

The limit on the maximum size of the precision for the scalable design is governed by the available memory
that stores the inputs and internal results. Given a sufficient amount of memory space, a scalable unit can perform
computation on 32-bit or 128-bit values. Moreover, the scalable architecture concepts provides a generic hardware
model that enhances portability across different hardware platforms. For instance, a Field Programmable Gate
Array (FPGA) with limited area may use a smaller datapath in order to have the whole system fitting into the
FPGA. If performance is the primary concern, then larger datapath version can be implemented for speed.'6

3.1. General ECCP Operation

Given a scalar multiplication the main control activates the AU to perform the basic operations of addition,
multiplication, squaring, and division. The control of each basic operation is performed by the AU control. The
main control passes the operands to the register file and activates the AU control. Once complete, the main
control load new operands, read results, and activate new basic operations, until the scalar multiplication is
complete.

There is no specialized hardware for squaring, and the multiplier is used for this purpose.



Inputs: 0< X <p,0<Y <p, 2" ! <p< 2", Field, Op, n
Output: Z = XY2™" mod p when Op = mult, Z = % mod p when Op = div

Algorithm:
IF Op = mult THEN /* Multiplication Mode */
D=0,U=0,W=X,C=Y,6d=n
ELSE /* Division Mode */
D=p,U=X,W=0,C=Y,6=0

END IF;
WHILE [(C # 0 AND Op = div) OR ( § # 0 AND Op = mult)]
IF ¢y = 0 THEN
C:=C >> 1
6:=6-1 /* Integer Operation */
ELSE
IF (Op = div) THEN
IF § < 0 THEN
Ce D U W,d:=-6
END IF;
END IF;
6:=6—-1
C:=(C+D) >> 1, U:=U+W)
END IF;
U:=U-+ug*xp) >> 1
END WHILE;
IF Op = div THEN

Figure 2. Simplification of Unified Modular Division/Multiplication Algorithm (UDMA) to work on GF(2") only

The AU can be seen as a hardware support for the field operations, with specific instructions to allow the
activation of these operations, data transfers (to and from the register file), and status verification. A detailed
list of these instructions is beyond the scope of this work.

4. ALGORITHM FOR MODULAR DIVISION AND MONTGOMERY
MULTIPLICATION

The datapath is responsible for the operations needed to accomplish the scalar point multiplication according to
the ”Double and Add” point multiplication algorithm in the projective coordinates shown in.'2

The AU architecture is defined by an algorithm for unified modular division/multiplication, which was devised
and proved to be correct in.1%17 Unified implies the algorithm to be functional in both prime G F(p) and binary
extension field GF(2"), also referred to as being dual field. In this work we are interested in GF(2") field only,
since the unified architecture has some unavoidable overhead. The algorithm is an extension of the unified division
algorithm presented in another work'® and combines the Montgomery multiplication and modular division in a
single flow, maximizing the reuse of the same data path. The tradeoff involves an increase in control complexity.

The pseudo code that represents the simplified version the algorithm in'7 to work in GF(2") only is shown in
Figure 2. Notice that modular inverse calculation is possible by forcing the numerator to a value of one during
a modular division operation. The full version of the algorithm was completely implemented (including control
signal timing and datapath structure) and described in.!® There the reader can obtain more details of the
unified and scalable design, together with performance analysis for the algorithm. This paper describes a simpler
and more efficient architecture that works for GF(2") only.

The simplified UDMA mode of operation is controlled by input Op (div or mult). For simplicity, the poly-
nomials X (z), Y (x), and p(z) are denoted as X, Y, and p, respectively, which corresponds to the bit-vector
representation of these polynomials.

The algorithm integrates the Extended Binary GCD algorithm and the Montgomery multiplication algorithm.
To compute Montgomery multiplication, the algorithm performs n iterations. The counter § is initialized with
value n, and in each iteration it is decremented by one. The variables used in the algorithm are initialized as:
C=Y,D=0,U=0,and W = X. The result is ready (Z = U) when 6 = 0. The partial product U is reduced



mod the field polynomial p in each iteration. While multiplying, addition is used in the operations that update
C and D. The >> operator indicates a 1-bit right shift operation.

The simplified UDMA computes modular division using the same structure used by the Extended Binary
GCD Algorithm for modular division.'® The variables are initialized as: C =Y, D =p, U = X, W = 0, and
6 = 0. The division is completed when C' = 0, and the final result is available in W.

The unified division/multiplication algorithm (UDMA) proposed in'? has certain operations that performed
in (GF(p) only and under certain conditions. These operations are time consuming (such as addition with carry).
In GF(2"), there is no carry since the addition in this field is accomplished by bit-wise XORing. As a result, the
simplified version of the UDMA has simpler operations and control flow which yields to a more efficient datapath
implementation.

5. EECP HARDWARE DESCRIPTION

The ECCP architecture was coded in VHDL. Every module was described using generic parameters, such that
the size of the architecture can be set to any desired value.

Since we are proposing a scalable architecture, there are some issues that need to be clarified before the
details about the EECP implementation are presented.

5.1. Data Dependency Between Words

In order to provide a word-by-word operation the input operands are divided into groups of smaller bit length,
referred in this text as words. For example, a 1024-bit value can be divided into two 512-bit words. Since
the algorithm contains right shifts, there is a dependency between consecutive words. Figure 3 illustrates the
information exchange needed to achieve a correct full-precision result.

Upper Word Lower Word

]

Overlap .-
Bi t MEB

Figure 3. Data dependency between operand Words.

A bit value at a position that is one bit higher than the most significant bit of the current word needs to be
extracted for a correct right shift operation. This bit corresponds to the least significant bit of the next consecutive
word. During arithmetic right shift of individual words, the bit value to be shifted into its most significant bit
position cannot be determined without the information from the connecting higher word. Considering the most
significant bit of a word as a sign bit and shifting accordingly leads to an incorrect result. It is important to
realize that the most significant bit of a word within the scalable design does not represent the most significant
bit of the full-precision result.

This extra bit is referred to as an "overlap bit” because the value is read twice in an overlapped fashion.
Acquiring overlapped bit occurs inside the register file. The bit tapping memory system has an extra output that
extracts the least significant bit from the next consecutive word, which is illustrated in Figure 4. Consequently,
the size of the scalable datapath is expended by one bit to include this overlap bit.
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Figure 4. Overlap Bit Extraction.

5.2. Multi-word operation

The control flow in the algorithm is determined by the least significant bit of the full precision operand value,
which is used to test even condition (¢ = 0). Following this observation, the logical word flow of the scalable
architecture begins with the least-significant (LS) word and move on to most-significant words, as shown in
Figure 5. The true LS bit of an operand is saved into a register such that the higher words can follow the same
control flow in the algorithm.
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Figure 5. Word Execution Sequence.

5.3. Partial Zero Detection

Since the ECCP operates on words of the full-precision operand, checking for zero condition is tested in a partial
manner. The word-based version of the zero detection unit is composed of a pass or fail register in addition to
zero test logic. The zero test logic checks if the word under execution matches the zero condition. The pass or
fail register retains the zero test information throughout different word executions.

5.4. Register File

The register file serves as a storage space for initial, intermediate, and final data results. The register file consists
of one input and two output ports, which can be viewed as a synchronous dual port memory. Dual output
ports supply two input values to the datapath for computation and the computed result is written back to the
register file. Both read and write timing of the memory is synchronous with the clock signal. For simplicity, the
architecture of single operand is provided in Figure 6, showing the access to the overlap bit.

With the aim to reduce unnecessary register space, the address bit length and the total number of addresses
can both be specified. For example, an address bit length of three can allow maximum of 23 = 8 addresses, but
if only five addresses are needed then it is possible to create five addresses by initial user setting.

As a requirement of supporting the scalable architecture, the register file is capable of reading the overlap bit
in addition to reading a specified word.
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Figure 6. Register for Multiple-word Operand - Component of the Register File.

5.5. Datapath

The datapath is responsible for data transfers and manipulations. Multiplexers direct dataflow and slightly
modified full adders manipulate input values. An adder is capable of computing addition in GF(2"). Extra logic
gate for a full adder in conjunction with small increase in control unit permits the design to operate in GF'(2")
and GF(p) fields.

Figure 7 displays the layout of the m-bit datapath (m < n) implementing the simplified UDMA. Each “while
iteration” of the algorithm is implemented in one clock cycle for multiplication mode, and in three clock cycles
for division mode if C' is odd, and 2 clock cycles if C' is even.

The proposed datapath has two inputs which receive their values from the output ports of the register file.
The main components of the datapath are the two adders, the resultshifter and the Y shifter.

The Yshifter shown in Figure 7 is a shift register that is used to implement the 1-bit right shift operation
(C >> 1) only in the multiplication mode. The Yshifteris loaded with the input Y (multiplier) when laodY = 1.
In both cases when C (remember that C' =Y') is even or odd, it is shifted right by 1-bit when shiftY = 1. The
least significant bit of the shifted C' goes to the control section to perform the test ¢y = 0.

The output of the datapath is shifted 1-bit to the right by correct wiring. The result_shifter at the output
of the second adder is used to choose between the output and its shifted value. This module is implemented as
2-input multiplexers with select line shift. When shift = 1, the shifted output is selected.

The MUX shown on top of Adderl in Figure 7 is used to select between the value 0 or W depending weather
C'is even or odd (depending on c¢g), respectively. On the other hand, the multiplexer shown at the top of Adder2
is used to select between the value 0 or the modulus P depending weather U is even or odd (depending on wy),
respectively.

5.6. Control

The major component in the control unit is a finite state machine which was implemented using a hardwired
control methodology. With the intention to design a robust and reliable control unit, the state machine was
coded as a Moore machine where the output signals depend solely on the present state, this way minimizing or
eliminating glitches.



Table 1. The critical path delay of the ECCP in nano-seconds for operand precision form (16-512) bits and different
datapath word sizes

DELAY (nano-seconds) Datapath word size

Precision(bits) 16 32 64 128 | 256 | 512
16-bit 172 | - - - - -
32-bit 176 | 17.8 | - - - -
64-bit 17.6 | 19.2 | 204 | - - -
128-bit 175 19.2 | 20.8 | 20 - -
256-bit 16.5 | 19.1 | 20.7 | 204 | 19 -
512-bit 16.7 | 18.2 | 20.7 | 20.5 | 19.5 | 20.2

The algorithm’s swap functions (C' < D and U < W) are accomplished within control unit to avoid actual
data transfer between registers. An actual transfer of data would be costly in terms of time, especially for a
system with large precision. Thus, the swap is performed exchanging the addresses of the register in question,
inside the control unit.

Another important component of the control unit is the delta counter. This counter is used to control
the swapping operation and the major algorithm control flow. The functionality for delta counter includes
decrementing and negating the count value. With the goal of implementing a fast counter, a ring counter design
was chosen. The delay of the ring counters are independent of size.!?

6. EXPERIMENTAL RESULTS AND ANALYSIS

The experimental data presented in this Section were generated using Mentor Graphics CAD tools. The target
technology was set to AMI05_fast auto (0.5 pm CMOS with hierarchy preserved) provided in the ASIC Design
Kit (ADK) from the same company..2’

The scalable architecture of the Elliptic Curve Crypto-Processor (ECCP) was described in VHDL and sim-
ulated in ModelSim to validate functional correctness. It was synthesized using Leonardo synthesis tool for
the available technology. ADK provides a consistent environment for comparison between the designs, and a
reasonable approximation of the system performance when using commercial ASIC technology.

Table 1 shows the critical path delays (in nano-seconds) of the ECCP for the precision range from 16 bits to
512 bits at different combinations of the datapath word size (form 16 to 512 bits).

From the delay Table, we can see that at word size 16, the critical path delay of the ECCP at operand
precision of 16 bits is 17.2 nsec, at 256 it is 16.5 nsec, and at 512 bits it is around 20.7 nsec.

We also notice that the minimum delay happens when the datapath word size is 16. When the word size
increases the delay increases slightly for a fixed operand precision, and the delay increases as the number of bits
increase and it saturates at higher precision.

The proposed architecture that implements the simplified modular multiplication algorithm (UDMA) shown
in Figure 2 performs one iteration of the algorithm in each clock cycle when computing Montgomery multipli-
cation. This means that we need n cycles to compute Montgomery modular multiplication. The ECCP has no
dedicated hardware for squaring (22), and therefore the multiplication algorithm is used for squaring.

On the other hand, it takes a maximum of 2 iterations/bit and on average 1.5 iterations/bit to compute the
modular inverse in GF(2") using the simplified algorithm. The ECCP architecture performs each iteration of
the algorithm in 2 clock cycles on average (one to compute C' + ¢o.D) and another to compute U + W with the
modulus reduction). Therefore, the GF(2™) inversion by the simplified algorithm takes on average 1.5 x 2 = 3
cycles for each bit.

In computing kP using the double-add method,'? where P=(X1,Y1, Z1), Q=(X2, Y2, Z5) are points on the
curve in the projective coordinates, we can assume that Zo = 1, Computing point addition (P # Q) requires 13
field multiplications and computing point doubling (P = Q) required 7 field multiplications.?! To compute the



Table 2. The total area of the ECCP in gates for operand precision form (16-512) bits and different datapath word sizes

AREA (Gates) Datapath word size

Precision(bits) | 16 32 64 128 256 512
16-bit 3857 | - - - - -
32-bit 4251 | 5567 | - - - -
64-bit 5012 | 6267 | 8945 | - - -
128-bit 6389 | 7664 | 10265 | 15727 | - -
256-bit 8212 10310 | 12928 | 18274 | 29434 | -
512-bit 12602 | 13861 | 18109 | 23473 | 34458 | 56570

scalar point multiplication (kP) using equation 1, n point doubling operations are needed (n is the order of the
field), and approximately n/2 point additions are needed (given that the number of 1’s in the binary expansion
of k is 0.5n).

Let the total average computation time of a given design to compute multiplication or division be Tyesign
which is given by:
Tesign = (cycles/bit) « n  clock period.

At operand precision of n= 512-bits, the time required to compute one multiplication by the ECCP is
Trnwtr = 1% 512 % 20.2 x 1072 = 10.3usec. Then at n= 512-bits, the ECCP computes point addition in:

Tpagq = 13 % T =~ 134usec

and half of that time is required to compute point doubling Tppousie = 0.5 * Tpaqq- To compute the scalar
point multiplication (kP), an inversion operation is required to transform back the result form the projective
to the affine coordinates. The total time to compute the modular division (inverse) by the ECCP is T;,, =
3 % Touie = 3lpusec. Then, the total time to compute kP by the proposed ECCP is:

Tip = 0.5 * Tpagq + 1 * Tppoubie + Liny = 13/2n * Tt + 0% Topge + 3wt
= (13.5n + 3) * Ty = (13.5n 4 3)(n * clock period) = (13.5n* + 3n) * clock period

At precision n= 512-bits, Typ = 71 m sec. The proposed ECCP computes the kP faster than previously
proposed elliptic curve architectures. As an example, the FPGA implementation of the Elliptic Curve processor
presented in?? computes the scalar point multiplication in 80.3 m sec at operand size of 163-bits. Also, the
ECCP has an advantage over other design by being scalable. I.e., the user can choose the word size to achieve
the required performance.

Table 2 shows the total area (in number of gates) for the ECCP design as a function of operand precision and
different datapath word size. The area for the ECCP design was extracted from the experimental data presented
in Table 2 as:

Agcep = 236.12xn 4+ 180 = O(n) gates

Form the above Table, we can see that the proposed ECCP has area complexity of O(n) at a given datapath
word size. This results is compatible with many other designs®? 24



7. CONCLUSION

In this work we present an Elliptic Curve Crypto-Processor (ECCP) architecture to compute point multiplication
in GF(2").

The speed of the crypto-processor depends on the arithmetic operations performed in the underlying field.

So, we used a new efficient algorithm to compute modular division and Montgomery modular multiplication. The
divider /multiplier that implements this algorithm is very efficient and has a scalable datapath that can handle
operands of any size. Also, the word size of the datapath can be adjusted to meet the area and performance
requirements.

Experimental results show that the total time required to compute scalar point multiplication is 71 m sec at

512-bit operand precision. This result is competitive with many other dedicated solutions.
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Figure 7. The Datapath of The ECCP.



