
SETTING INITIAL SECRET KEYS IN A
MOBILE AD HOC NETWORK

Murat Cihan1 and Çetin Kaya Koç2,3

1 Işık University, Maslak 34398, İstanbul, Turkey,
mcihan@isikun.edu.tr,

2 İstanbul Commerce University, Eminönü 34378, İstanbul, Turkey
3 Oregon State University, Corvallis, Oregon 97331, USA,

koc@eecs.oregonstate.edu

Abstract. Mobile ad hoc networks require specialized authentication
protocols due to the mobility of users and lack of always-available trusted
servers. There are a variety of mobile ad hoc authentication protocols for
creating session and group keys, once a subset of individual nodes are
signed in, i.e., established their shared secret keys. In this paper, we ad-
dress the issue of setting initial secret keys for the nodes in a mobile ad
hoc network architecture. While there are some new approaches such as
the resurrecting duckling protocol, we address more practical issues. We
have developed new protocols for setting the initial keys and extending
the circle of authenticated nodes as new nodes arrive to join the net-
work. We created an experimental system for the Linux platform in the
Java programming language using the Bluetooth as the networking ar-
chitecture. Our protocols can be used to create a mobile ad hoc network
of authenticated nodes of cell phones, palm and pocket PC computers,
and laptop computers. In this paper, we describe the design and im-
plementation details of the protocols and summarize the results of our
benchmarking tests.

1 Introduction

Ad hoc networks are designed to work autonomously, requiring no previously
configured static infrastructure. Currently, there are several ways to form an ad
hoc network due to widespread usage of mobile computing and wireless commu-
nication technologies. As a result of these improvements, mobile ad hoc networks
found many specific application areas in our daily lives.

Due to the mobility of users and lack of trusted servers in mobile ad hoc
networks require specialized authentication protocols. There are several mobile
ad hoc authentication protocols for creating session and group keys, once a
subset of individual nodes have established their shared secret keys [15], [1], [2].
In this paper, we study on the issue of setting initial secret keys for the nodes
in a mobile ad hoc network architecture. After the brief introduction, we give
detailed information about ad hoc networking technologies. We have particularly
considered the most used three ad hoc networking technologies: Wireless LAN,
infrared, and Bluetooth.

2

An ad hoc network can be characterized as a dynamically reconfigurable net-
work. The nodes are generally mobile and it is easy to join or leave the network.
These properties require ad hoc networking to be examined in a different way
from traditional networking concepts [10]. In an ad hoc network any node can
join in or move outfrom the network without a special effort, except some secu-
rity issues have to be considered. Within the network, members must not have
higher precedence or more superior role than the others that form the network.
In case where special duties assigned on particular mobile nodes, any node re-
moval would create serious problems for thewhole ad hoc network. For example,
removal of a server or a gateway node, which has a duty to the others, would cre-
ate trouble since gateway or server would be missing. Recovering such problems
may cause inefficient resource allocation. Therefore, it is not a good practice to
load server applications or programs on the nodes unless some special algorithms
and solutions have been designed for such problems [3].

Ad hoc networking is a fairly new concept, however, its application areas are
very large. One particular application area is in military operations. The idea
of an easily constructed network with mobile nodes is an attractive feature for
battlefield computation and communication. Units could be traced in the field
or a particlar group can be given specific orders. Another application of ad hoc
networking is found in multi player computer games. Instantaneous information
sharing in a business meeting between the presenter and the audience is yet
another example. The same is valid for an instructor passing information to the
students in a classroom. Furthermore, a patient’s health information could be
shared with the doctors and nurses who have a mobile devices in ad hoc network.

2 Ad hoc Networking Technologies

One can construct an ad hoc network using several different technologies. With
the advances in mobile device and programming technologies, it is easy to create
such a network at any time and in any place needed. By definition an ad hoc
network is open to new nodes and no time limitation applies to the incoming or
leaving nodes. To form such a network, one should select the appropriate tech-
nology. With wires, it is almost impossible to form an ad hoc network with the
desired properties. For this purpose, wireless technologies are preferred. Infrared,
wireless LAN, and bluetooth are the examples of these wireless technologies.

We can group these technologies into two general categories in terms of usage:
Wireless local area networks (WLAN) , wireless personal area networks (WPAN)
[16]. Infrared and bluetooth fall into the second category while the others, which
are interested in broader areas, fall into the former one. In Figure 1, we give an
example of an ad hoc network, with several members and different technologies
used for connections.

2.1 Wireless LAN

Wireless LAN protocols, such as IEEE802.11 standard, are generally used in
wide area networking [7]. Wireless routers and switches are used to connect the

3

Figure 1: An example of Ad Hoc Network (Source: [10])

nodes. These common connection points are connected to some device with wire
to establish a connection with the wireless nodes. No two nodes can communicate
with each other without being connected to the switch or the router. These
devices play the role of intermediary access point for all of the nodes. The number
of nodes connected to the network is limited to the capacity of access points.
This technology is used, for example, in a building to let the mobile users connect
to the LAN, thus to the Internet.

2.2 Infrared

Infrared is used in fairly smaller areas for passing instantaneous information
between devices. It is designed for short range, easy, interoperable, and low
cost information sharing [18]. Interoperable means that many platforms could
support this technology and this standard. It is a low-cost solution compared
to the cost of the device on which infrared device is built. With the range of
1 meter with 15 degree half-angle, it is designed for point-and-shoot place-and-
play communication [8]. This feature makes infrared a replacement for the serial
cable between two parties. Instead of connecting two devices with a cable for a
small communication, infrared could be used. Thus, within a previously known
short range [18], two parties could make use of infrared. Since the working range

4

is limited, infrared is not a good solution for large ad hoc networks. Exchanging
business cards via mobile devices and getting print out via infrared enabled
printer and laptop could be some examples for use of infrared technology in ad
hoc networking.

2.3 Bluetooth

Bluetooth is another personal area networking technology. It is a short range
wireless radio network designed for connecting peripheral devices [6]. This is
again a cable replacement technology like infrared. However; with its profiles,
bluetooth is able to give much more than that [5]. Bluetooth is used not only for
peripheral communication, but also for communicating mobile phones, modems,
Personal Digital Assistants (PDA), computers, printers, local area networks, and
other similar devices. Each device can communicate up to seven other nodes at
a time and can be a member of several different ad hoc networks. Any bluetooth
enabled device could search for other bluetooth devices and could communicate
with them [9]. A piconet is constructed when two or more units that share the
same area and the same communication channel, whereas in the same area,
different communication channels make up a scatternet. A scatternet could also
be described as a group of piconets [4]. With these characteristic, bluetooth is
much effective when there are many nodes communicating.

In a bluetooth ad hoc network, all nodes assumed to have the same hardware
capabilities. One of the nodes must be the master to regulate the traffic on the
piconet while others are slave nodes. However, the members may change roles
if necessary and this property provides homogenousness among the nodes [9]. A
bluetooth ad hoc network is open for new nodes, join or leave operations are easy
[17]. As an example of how bluetooth is used in ad hoc networking, a bluetooth
enabled mobile phone with a bluetooth enabled headset could be given. In a
short range, one may not even need to touch the the mobile phone to set up a
talk session just using the bluetooth enabled headset.

3 Security Considerations

Information security is a fundamental issue with ad hoc networks and certainly
security is an essential problem for all networks. With a strong infrastructure
this problem could be diminished. However, with mobile nodes and wireless
links, it is not easy to provide such a secure communication [19]. In the case of
only two nodes talking to each other with no possibility of being traced, there
would be no need for security specific applications. However, this is not the case.
Most of the time the ad hoc network has more than two parties and information
must pass over some intermediate stations, which are actually the other nodes
in the network. In this context, information flow must be secured from the third
party devices, even if it is on the way of flow [12]. Furthermore, since ad hoc
networking is generally on air communication, it is also open for eavesdropping
or interference. An ad hoc network should be secured from these kinds of attacks.

5

While there are variety of security issues to be concerned about, we address
a particular problem in ad hoc network security: the placemet of setting of the
initial secret keys. The most remarkable work in this area is the Resurrecting
Duckling Protocol [14]. The protocol assumes that the devices are manufactured
by its manufacturer to allow it to be implanted with a secret key the first time
device is turned on. Once the device (duckling) is purchased by its owner, it is
powered on in a physically secure area and device ”looks” for another device
(mother duck) to connect to and accept a secret key from the mother and from
there on, it recognizes its mother as a secure communicating partner.

The resurrecting duckling protocol is simple and very powerful. As the devices
are made to confirm this protocol, either to act as duckling or as mothers (of
course, roles can be interchanged: a mother duck can be a duckling to another
duck). however, this protocol has not been embraced by manufacturers yet. Until
then, we need practical protocols to set up initial secret keys. This is the subject
of our investigation.

We propose four particular protocols for setting up initial keys. We briefly
describe these four protocols for setting initial secret keys for the nodes in a
mobile ad hoc network architecture and give benchmarking results obtained
from our reference implementation. These protocols are:

1. PlainText: The new key is passed as a plain text to the device.
2. SimpleEncryption: The new key is passed after encrypting with previously

known key and decrypted at receiver side.
3. DiffieHellmann: Two devices agree on the key using the classical (mod p)

Diffie-Hellmann key exchange method.
4. EllipticCurveDH: Two devices agree on the key using the elliptic curve Diffie-

Hellmann key exchange method.

4 Reference Implementation Platform

We created a laboratory ad hoc network system in order to implemented and
test our protocols. The following nodes and network hardware and protocols are
used:

– Laptop PC, HP NX9000, Intel P4 Mobile 2200 MHz processor, 256 MB
memory [C1]

– Desktop PC, Intel P4 1400 MHz processor, 256 MB memory [C2]
– Desktop PC, AMD Duron 1200 MHz processor, 256 MB memory [C3]
– Pocket PC, Qtek 2020, Bluetooth Enabled [C4]
– Bluetooth enabled Mobile phone, Siemens S55 [P1]
– Bluetooth enabled Mobile phone, Sony-Ericsson T630 [P2]
– Class 2 USB Bluetooth adapter, Billionton [A1]
– Class 1 USB Bluetooth adapter, Billionton [A2]

The first computer [C1]is set to be Client device, having attached the first
Bluetooth adapter [A1] with a 10 meters range. Next, we set the [C2] computer as

6

Server device, having attached the other Bluetooth adapter [A2] providing a 100
meters range. The client and the server devices are set for running BlueClient
and BlueServer applications, respectively. The other devices [C3, C4, P1, P2]are
used for discovery and noise purposes.

In Table 1, we have summarized the code space requirements of the imple-
mentation. Each class in the project is included this table, indicating; number
of lines in the source code, the size of the source code in bytes, and the size of
compiled class files in bytes.

Table 1: Code space analysis of the program

Number Source Code Compiled Class
Class Name of Lines (bytes) (bytes)

BlueClient 1,132 41,488 27,002

BlueServer 680 26,379 19,344

EC/ECOperations 473 16,263 9,954

DH/diffieHellmann 297 10,461 6,413

Aes/AES 1,260 43,180 43,171

Des/Encrypt 195 4,039 4,547

Des/Decrypt 190 3,918 4,461

Des/desHelper 226 5,563 7,917

Des/Subkeys 70 1,306 1,622

Total 4,523 152,592 124,431

Table 1, also gives us the total amount of space needed for hosting the whole
implementation, requiring a 124kB disk space. In case only one of the four meth-
ods to be used, this space requirement falls. For example, diffeHellmann Key
Exchange Method requires only 6 kB, which yields only 50 kB with the two
driver classes, namely BlueClient and BlueServer. It is not a huge consumption
of disk scape even if small mobile devices with small disk spaces are concerned.

5 Device and Service Discovery

Device discovery is the first touch of the local device with the other devices
around, in which it determines the initial information about them, such as de-
vice type, Bluetooth address, and friendly name. Since it is the first step in the
two sided application, we shall start with it. In Table 2, we tabulate the elapsed
time in device search in several attempts. We set four remote devices around
([C2, C4, P1, P2]) and decreased the number of remote devices one at a time
until the server device is left. We made five device discovery attempts for each
state and averaged the elapsed time values. The symbols in this table have the
following meanings:

7

– C: One computer is discovered.
– P: One cellular phone is discovered
– C-C-P-P: Two computers and two cellular phones are discovered.
– C-C-P: Two computers and one cellular phone are discovered
– C-C: Two computers are discovered
– C: Only one computer is discovered.

Table 2: The elapsed time for device discovery in milliseconds.

Trial C-C-P-P C-C-P C-C C

1 16,329 12,632 10,540 10,742

2 12,737 11,939 14,192 10,378

3 16,052 14,538 13,002 10,380

4 14,436 14,436 13,012 10,405

5 11,939 11,939 14,470 10,783

Average 15,355 13,096 13,043 10,537

We assumed that we would have the most accurate results when the link
quality is high, as they are closer (within the range of almost 1 meter). Therefore,
the measurements were made while the local client device is pretty close to the
other devices. The average elapsed time values showed us that the number of
devices around affects the time consumed for device discovery since local device
tries to gather some data on each and every remote device around. We can
conclude that with the most optimistic assumption, device discovery process
takes 10 seconds in average.

Service discovery process is another time consuming work in the implementa-
tion. We measured the time passed in service discovery process on two different
computers, on of which is was our server device ([C2]) hosting only KeyEx-
changeMethods and the other one ([C4]) having several services available to be
discovered. we averaged the elapsed time after five trials, as given in Table 3.

Table 3: Time passed for service discovery in milliseconds.

Trial Server Device Other Computer

1 1,318 1,174

2 1,525 1,139

3 1,140 1,136

4 1,282 1,143

5 1,428 1,153

Average 1338 1149

The client device queries service discovery database of the remote device in
service discovery process. The list of services to be searched are specified as a

8

list in the client application, which in turn increases the work load in service dis-
covery process. We searched the same list of services on the two remote devices.
The average elapsed time values were not much different than each other. This
showed us that the number of services provided in two devices does not cause
a huge gab between two. In addition, according to the results, service discov-
ery process does not tend to be a much time consuming process, but finishes in
almost 1 second.

6 Running Time of the Protocols

6.1 PlainText Key Exchange Method

Once the two devices are connected on KeyExchangeMethods service, they select
one of the four methods to run. The first method in hand is plainText Key
Exchange Method. Here, we demonstrate the time passed in running this method
between the two devices. In Table 4, we give the elapsed time in 7 trials and
average of them, for both of client and server applications.

The key generation process was the interactive part of this method. We did
not want to reflect the time passed in user input to total elapsed time. Thus, we
used a constant input for key generation instead of requesting from the user as
follows:

String key = "0123456789ABCDEF";
key = getDigest(key,modeMD5);

Table 4: Elapsed time during plainText Key Exchange Algorithm by Client and
Server applications, in milliseconds.

Trial Client Application Server Application

1 6 4

2 10 3

3 3 7

4 5 6

5 6 6

6 6 6

7 3 6

Average 5.6 5.3

Since plainText Key Exchange Method consists of generating a key at client
an simply passing it to server application, we see pretty small amount of elapsed
time. Total of almost 5 milliseconds were enough for this method to be accom-
plished at both sides.

9

6.2 SimpleEncryption Key Exchange Method

The second method has two interactive parts. As in the previous method, we
did not want to include the time passed in user input for both session key and
temporary key generations processes. Instead, we again used constant inputs in
the program. Since we included four options in this method, we examined each
of them separately. The elapsed time values on the client side are demonstrated
for each of four options in Table 5.

Table 5: Elapsed time during SimpleEncryption Key Exchange Algorithm by Client
application, in milliseconds.

Trial DES-MD5 DES-SHA AES-MD5 AES-SHA

1 77 43 59 65

2 42 45 59 65

3 53 48 68 69

4 46 67 61 68

5 56 54 71 74

6 50 59 76 88

7 38 49 66 71

Average 51.7 52.1 65.7 71.4

We noticed that the options with AES took relatively more time than the
options with DES when selected as the encryption algorithm. Moreover, hash
algorithm was not making much difference in running time with respect to the
other elements. In addition to client side analysis, we included the elapsed time
values on the server side demonstrating each of four options in Table 6.

Table 6: Elapsed time during SimpleEncryption Key Exchange Algorithm by Server
application, in milliseconds.

Trial DES-MD5 DES-SHA AES-MD5 AES-SHA

1 24 6 13 29

2 7 7 14 34

3 22 5 33 25

4 10 5 13 27

5 24 5 30 33

6 11 11 19 31

7 13 5 31 25

Average 17.3 6.3 21.9 29.12

10

We see that encryption algorithm selection has the same effect on the server side
applications. The options with AES took more time relative to the options with
DES. As a result, we may conclude that in SimpleEncryption Key Exchange
Method, the options with DES are less time consuming than those with AES. In
general, all of the four options have elapsed time values less than 50 milliseconds
at client side and less than 30 milliseconds at server side. This method may seem
to consume longer time with respect to the first method but has pretty short
time intervals.

6.3 DiffieHellmann Key Exchange Method

Different from previous two methods, DiffieHellmann Key Exchange Method
has no interactive operations. The whole process goes in between the client
and the server applications. The client application is responsible for generating
entities that are necessary for the algorithm to start. Therefore, it is supposed
that client application would consume more time than server application does.
In Table 7, we give the elapsed time values in this method, at both client and
server sides.

Table 7: Elapsed time during diffieHellmann Key Exchange Algorithm by Client
and Server applications in milliseconds.

Trial Client Application Server Application

1 83 31

2 62 10

3 84 11

4 114 34

5 75 25

6 93 28

7 95 31

8 91 30

Average 87.1 25

This method is based on consecutive multiplications at both sides and passing
the results to each other. At the end, we clearly see that the client application
needs more time to accomplish its tasks than the server application does. In
addition, the results are almost at the same level with the SimpleEncryption
Key Exchange Algorithm, with average of 90 milliseconds at client side and 25
milliseconds at server side.

6.4 EllipticCurveDH Key Exchange Method

The most time consuming phase in EllipticCurveDH Key Exchange Method is
to generate a special curve to agree on. Instead of generating an elliptic curve

11

from scratch, we decided to use one of the recommended elliptic curve by NIST
[11]. Therefore we minimized the time for preliminary steps of the algorithm. As
in diffieHellmann algorithm, the algorithm is based on multiplicating a point
on the curve with a scalar at both sides with special rules. In our implementation,
we included a special function that recursively add two points on the curve. Thus,
we also minimized the intermediate steps. In Table 8, we give the elapsed time
values in this method.

Table 8: Elapsed time during EllipticCurveDH Key Exchange Algorithm by Client
and Server applications, in milliseconds.

Trial Client Application Server Application

1 436 490

2 379 428

3 268 358

4 364 390

5 279 421

6 267 298

7 282 452

8 353 378

Average 328.5 401.9

We notice that, EllipticCurveDH Key Exchange Algorithm causes more time
consumption than the previous three methods. On average, the client side needs
330 milliseconds as the server side consumes 400 milliseconds to accomplish their
tasks.

6.5 Summary Timing Results

We summarize the results obtained from running time measurements. Table 9
demonstrates the elapsed time values for each algorithm, as average of those
obtained from client and server sides. plainText Key Exchange Algorithm seems
to be the fastest method, which lasts less than 10 milliseconds. However, we do
not consider it as safe since it is very open to passive attacks such as traffic
analysis.

The second fastest method is SimpleEncryption Key Exchange Algorithm
with less than 40 milliseconds of elapsed time in average. This is a stronger form
of plainText algorithm, however we emphasize a weak in this algorithm: How
secure is the key that is used for encrypting and decrypting the secret key. We
propose an instant communication between the users that results a PIN-like seed
for the first key.

The third fastest method seems to be diffieHellmann Key Exchange Algo-
rithm, giving a less than 60 milliseconds of average running time. In addition,

12

Table 9: The average running times for each algorithm in milliseconds.

Method Average running-time

plainText 5.43

SimpleEncryption 39.45

diffieHellmann 56.06

EllipticCurveDH 365.19

EllipticCurveDH Key Exchange Algorithm processes slower than the other algo-
rithms, with the average running time of 365 milliseconds. However, we consider
these two slowest algorithms as providing rather stronger security than the pre-
vious two algorithms, since due to their unique structure which is they are based
on public-key infrastructure and they do not leak intermediate results to the
adversaries.

7 Conclusion

Our code space requirement analysis show that a total of 124 kilobytes of disk
space is enough for installing the whole application on a device. This requirement
decreases as only one of the algorithms is hired. Currently, mobile devices (mobile
phones, portable computers, etc.) are produced providing memory in megabytes
level, which constitutes a valid infrastructure for installation. Therefore, our
solution is applicable to the current consumer products.

Running time analysis show that the fastest algorithm is also the least secure
one. The other algorithms, which we consider as being more secure, consume
more time to accomplish their tasks. However, it important to notice that all
four protocols work and finish their processes in less than half of a second.
Considering the memory constraints, running time requirements, and security
levels of these algorithms, we propose to select the algorithm with respect to
the security needs of the system in consideration. In addition, diffieHellmann
and EllipticCurveDH methods are able to establish variable sizes of secret keys,
which in turn can be applied to the different systems with various sizes of keys.

In this paper, we introduced and implemented four methods for exchang-
ing initial secret keys in ad hoc networking environment. Our reference imple-
mentation was based on Bluetooth technology and we used Java programming
language on Linux platform. Since ad hoc networking has many applications,
reference implementations can be tested in variety on applications. We are plan-
ning to embed our methods into real-life applications and discover which of them
is most suitable for a given application.

References

1. N. Asokan and P. Ginzboorg: Key Agreement in Ad hoc Networks, Computer Com-
munications, Vol.23, No.17, (November 2000)

13

2. S. Capkun, L. Buttyan, and J. Hubaux: Self-organized Public-Key Management for
Mobile Ad Hoc Networks, IEEE Transactions on Mobile Computing, Vol.2, No.1,
(January-March 2003)

3. J. Costa-Requena: Mobility and Network Management in Ad Hoc Networks,
IASTED International Conference, Communication Systems and Networks (CSN
2002), September 9-12, 2002, Malaga, Spain.

4. L. Dao-Hui, L. Gang, and G. Bao-Xin: The Radio Networking of Bluetooth, Proceed-
ings of 3rd International Conference on Microwave and Millimeter Wave Technology,
2002

5. D. A. Gratton: Bluetooth Profiles The Definitive Guide, Prentice Hall PTR, 2003
6. J.C. Haartsen: Bluetooth - The Universal Radio Interface for Ad Hoc, Wireless

Connectivity, Ericsson Review, Vol. 75, No.3, pp.110-117 (1998)
7. IEEE Std. 802.11: Wireless LAN Specifications, IEEE, 1999
8. I. Millar, M. Beale, B. J. Donoghue, Kirk W. Lindstrom, and Stuart Williams:

The IrDA Standards for High-Speed Infrared Communications, The Hewlett-Packard
Journal, February-1998

9. R. Morrow: Bluetooth Operation and Use, McGraw-Hill Publishing, 2002
10. K. Nieminen: Introduction to Ad Hoc Networking, Networking Laboratory,

Helsinki University of Technology
11. National Istitute of Standards and Technology (NIST): Recommended Elliptic

Curves For Federal Government Use, July 1999,
http://csrc.nist.gov/CryptoToolkit/dss/ecdsa/INISTReCur.pdf

12. P. Papadimitratos, Z. J. Haas: Secure Routing for Mobile Ad Hoc Networks, Pro-
ceedings of SCS Communication Networks and Distributed Systems Modeling and
Simulation Conference (CNDS 2002), January-2002

13. M. Särelä : Military Communication Systems, Experience and Applications, The
European Physical Journal B, Vol. 10, pp.99-103, (1999)

14. F. Stajano: Security for Ubiquitous Computing, John Wiley, 2002
15. G. Steel, A. Bundy, and M. Maidl: Attacking the Asokan-Ginzboorg Protocol for

Key Distribution in an Ad-Hoc Bluetooth Network Using CORAL, Proceedings of
the 23rd IFIP TC6/WG 6.1 International Conference on Formal Techniques for Net-
worked and Distributed Systems (FORTE’03, Berlin, Germany), pp.1-10, September
2003

16. S. Uskela: Link Technology Aspects in Multihop Ad Hoc Networks, Networking
Laboratory, Helsinki University of Technology (2002)

17. J. Välimäki: Bluetooth and Ad Hoc Networking,
http://citeseer.ist.psu.edu/540179.html

18. S. Williams and I. Millar: The IrDA Platform, HP Laboratories, Technical Report,
HPL-95-29, (1995), http://www.hpl.hp.com/techreports/95/HPL-95-29.pdf

19. L. Zhou, Z. J. Haas: Securing Ad Hoc Networks, IEEE Network - Special Issue on
Network Security, (November/December 1999), pp24-30.

