
A Dual-field Modular Division Algorithm and
Architecture for Application Specific Hardware

Lo’ai A. Tawalbeh, Alexandre F. Tenca, Song Park and Cetin¸ . K. Koç
School of Electrical Engineering & Computer Science

Oregon State University
tawalbeh,tenca,parkso,koc@ece.orst.edu

Abstract— This paper presents a dual-field modular divi-
sion (inversion) algorithm and its hardware design. The
algorithm is based on the Extended Euclidean and the Bi-
nary GCD algorithms. The use of counters to keep track of
the difference between field elements in this algorithm elim-
inates the need for comparisons which are usually expensive
and time-consuming. The algorithm has simple control flow
and arithmetic operations making it suitable for applica-
tion specific hardware implementation. The proposed ar-
chitecture uses a scheduling method to reduce the number
of hardware resources without significantly increasing the
total execution time. Its datapath efficiently supports all
the operations in the algorithm and uses carry-save unified
adders for reduced critical path delay, making the proposed
architecture faster than other previously proposed designs.
Experimental results using synthesis for AMI 0.5µm CMOS
technology are shown and compared with other dividers.

Keywords—Unified Algorithm, Finite Fields Arithmetic,
Hardware Architecture, Modular Division, Modular In-
verse, Dual-field Division, Carry-save adders

I. Introduction

Computing the modular division or inverse in finite fields
(most frequently used fields are prime fields – GF (p) – and
binary extension fields – GF (2n)), is a very important arith-
metic operation in cryptographic algorithms based on ellip-
tic curves [1].

A previous study shows that the performance of Elliptic
Curve Cryptography (ECC) can be improved when modular
division or inverse are implemented in hardware [2], [3].

Based on the Extended Euclidean Algorithm (EEA) [4]
and the Binary GCD algorithm [5], a Unified Modular Di-
vision (UMD) algorithm was developed and compared with
other algorithms in [6]. The UMD is a dual-field algorithm
able to compute the modular division in both GF (p) and
GF (2n) fields. It does not have complex operations and tests
and it requires fewer clock cycles than other modular divi-
sion algorithms. These characteristics make the algorithm
suitable for hardware implementation. This work briefly
presents the UMD algorithm developed in [6] and proposes
a full-precision hardware architecture for it.

Most of the modular division (inversion) algorithms [3],
[7], [8], [9] have integer and polynomial degree comparisons
as part of their control flow. Differently from them, the
UMD algorithm uses a counter variable to keep track of the
difference between field elements and a single test of zero
which basically eliminates the need for complex tests and
reduces the complexity of each iteration [6]. Counters have
also been used to some extend in some division algorithms in
GF (2n) [9] and GF (p) [10]. The counter can be implemented
using fast up/down counters as the ones described in [11].

The public-key processor presented in [7] implements op-
erations required for Elliptic Curve Cryptography (ECC)
including modular inverse in GF (2n) only, while the algo-
rithm in [5] considers only elements in GF (p). The bit-serial
systolic architecture presented in [9] computes the modular

inverse in GF (2n) only. Another work in [8] presents a very
simple dual-field arithmetic unit, however an unified algo-
rithm for modular inverse/division was not shown, making
the control section of the design somewhat unknown. All
the modular division algorithms in these works are based
on EEA.

This paper describes a hardware architecture for the
UMD [6]. A scheduling technique is used to better uti-
lize the adders in the datapath and reduce the hardware
complexity of the final design. The computations in both
fields (GF (p) and GF (2n)) are implemented with redundant
Carry-Save (CS) adders to reduce the clock cycle time and
make the design almost independent on the operand preci-
sion.

The following Section presents some mathematical con-
cepts and the notation used in this paper. Section III intro-
duces the unified modular division algorithm and discusses
its properties. The overall organization of the hardware
design that implements the UMD and its main functional
blocks are shown and described in detail in Section IV. Ex-
perimental results are shown in Section V, followed by con-
clusions in Section VI.

II. Mathematical Concepts and Notation

The elements of the binary extension field Y (x) ∈ GF (2n)
are non-zero polynomials of degree less than n when the
polynomial basis is used to represent the field elements
(which is the case in this paper). Each element has co-
efficients that are elements in GF (2), which are represented
by the values {0, 1}. On the other hand, the elements in the
prime field GF (p) are integers in the range {0, ..., p−1} where
p is a n-bit prime modulus in the range 2n−1 < p < 2n. Bit
vectors are used to represent the elements in both fields as
follows:

GF (2n) : Y (x) =

n−1∑
i=0

yi ∗ xi

GF (p) : Y =

n−1∑
i=0

yi ∗ 2i

where yi ∈ {0, 1} in both cases. The polynomial Y (x) is
denoted as Y in the algorithm description for simplicity.

The addition operation of the elements is different in each
field. Addition of two polynomials in GF (2n) is done by a
bitwise logic exclusive OR operation (a xor b = a ⊕ b =
a′b + ab′) between the two bit vectors being added. In other
words the additions in GF (2n) are done modulo 2 [8], as
shown in the following equation:

Y (x) + W (x) =

n−1∑
i=0

yi ∗ xi +

n−1∑
i=0

wi ∗ xi =

n−1∑
i=0

(yi xor wi)x
i

Subtraction and addition in GF (2n) are equivalent. Inter-
mediate results of operations in GF (2n) that are represented

Function: Modular Division in GF (p) and GF (2n) fields
Inputs: 0 ≤ X < p, 0 < Y < p, 2n−1 < p < 2n, Field

Output: Z = X
Y

mod p when Field = GF (p), Z(x) =
X(x)
Y (x)

mod

p(x) when Field = GF (2n)
Algorithm:
C = Y , U = X, D = p, W = 0, δ = 0

WHILE C 6= 0
IF c0 = 0 THEN

C := C >> 1
δ := δ − 1 /* Integer Operation */

ELSE
IF δ < 0 THEN C ⇔ D, U ⇔ W , δ := −δ
END IF;
k := 1
IF((C + D) mod4 6= 0 AND Field = GF (p)) THEN k := −1
ELSE δ := δ − 1
END IF;
C := (C + k ∗D) >> 1, U := (U + k ∗W);

END IF;
U := (U + u0 ∗ p) >> 1

END WHILE;
IF D = 1 THEN Z := W
ELSE Z := p−W
END IF;

Fig. 1. Unified Modular Division Algorithm (UMD)

by polynomials of degree greater or equal to n are reduced
using a field polynomial p(x) of degree n (irreducible poly-
nomial).

Moreover, the addition of two elements Y and W in GF (p)
is done as a conventional integer addition. The propagation
of carries in this case will depend on the use of redundant
or non-redundant representation of elements. Carry-Save
(CS) representation is used in this work. Modular reduction
is required when the sum exceeds the value of p to keep the
result in the set {0, ..., p− 1} .

III. The Unified Modular Division Algorithm (UMD)

Figure 1 shows the dual-field division algorithm proposed
in [6]. The UMD algorithm computes the modular division

in GF (2n) when Field = GF (2n) (Z(x) =
X(x)
Y (x)

mod p(x)), and in

GF (p) when Field = GF (p). In both cases, Y 6= 0. If X is set
to one, the UMD algorithm computes the modular inverse.
We must say that the operations on the control variable
δ are always integer operations regardless of what is the
specified field. On the other hand, specifying a field forces
all the additions/subtractions to be done in this field. Swap
of values between two variables is indicated by the symbol
⇔. The notation for the least-significant bits of C and U
is c0 and u0, respectively. Notice that inputs to the UMD
algorithm (X , Y) are bit vectors that represent elements in
GF (p) and GF (2n).

The UMD algorithm computes the division in GF (p) based on
some facts related to the greatest common divisor (GCD) of two
numbers [4], [5], [6]. Basically, in GF (p) it can be shown that when
C is odd then either C + D or C −D is divisible by 4, and so it can
be reduced (by right shift). In GF (2n), the divisibility by 4 cannot
be enforced, but the result of C + D is still divisible by 2.

The modular reduction operation U := (U + k ∗ W)/2 mod p in
Gf(p) or U(x) := (U(x)+k∗W (x))/x mod p(x) in GF (2n), is imple-
mented by the combination of the two expressions: U := (U +k ∗W)
and U := (U + u0 ∗ p) >> 1. This way, the modular reduction is
done by a simple conditional addition of the modulus.

The validity of the UMD algorithm is shown in [6]. The inverse
in the Montgomery domain can be also computed by the same al-
gorithm. Considering the values r and Y as inputs to the UMD
algorithm, where r = 2n or xn (depends on the field), we get
Z = r

Y
(mod p) = Y −1r (mod p) which is the inverse of Y in the

Montgomery domain. But if we use r and Y r as inputs, the algo-
rithm computes Z = r

Y r
(mod p) = 1

Y
(modp) which is the inverse

of Y in the integer domain. The execution time is the same for all
cases when we consider that the constant r is pre-computed.

IV. Overall Organization

Figure 2 shows the top level organization of the unified modular
divider that implements the UMD algorithm. The main functional
blocks are Registers, Swapping Network (Multiplexers), Control and
Datapath.

C out U out

Load

SEL

p

UMD Datapath

Load

input
Load (X,Y,p)

Control

reset

cl
k

FieldOp clk(2x)

Lo
ad

 C
,U

Output (Z)

c 0

Load

Swapping Network

Registers

C U D W

C U D W

Lo
ad

 D
,W

Fig. 2. Top Level Organization of The Modular Divider Which
Implements The UMD Algorithm.

The registers C, U , D, and W are initialized with the inputs
(X,Y ,p) when Load = 1 through three-state buffers. When Load =
0, the registers receive their values from Uout and Cout coming from
the datapath. Uout is fed back to either U or W registers depending
on Load U and Load W , respectively. Also, Cout is fed back to C or
D registers depending on Load C or Load D, respectively. All these
signals are generated by the control block.

The swap operations (C ⇔ D, U ⇔ W) are realized by the Swap-
ping Network which is a set of two-input muxes, controlled by the
SEL signal provided by the control block and takes its value based
on the value of δ (kept internally). It is described in more detail in
Section IV-B.

A. Adders Scheduling for Efficiency

The UMD algorithm performs in the worst case (else part of the
algorithm) 3 additions in each iteration which are shown in Figure 3.
Using 3 adders will increase the area of the design significantly espe-
cially for large precision inputs. Another alternative is to use a single
adder in more than one clock cycle to complete one iteration. Such a
solution would increase the overall time to compute the division but
would be a solution when the area is too restrictive. Therefore for
this implementation of an isolated division unit the use of two adders
is the best choice.

In this worst case scenario (figure 3), there is data dependency
between additions A1 (U + k ∗W) and A2 (U + u0 ∗ p). Therefore,
one iteration is complete only after two consecutive additions are per-
formed. If we assign addition A1 to one adder (adder1) and addition
A2 to another adder (adder2), each adder will be working for only
half of the clock cycle time. Based on this observation, we propose a
solution that uses adder1 to compute addition 3 (A3) in the second
half of the iteration cycle, while adder2 is computing A2. This solu-
tion requires a register or latch between the two adders, clocked at
twice the clock frequency at which iterations are executed.

As can be seen from Figure 3, Adder1 receives the operands to
compute A1 during phase 1 (φ1). At the end of φ1, the adder output
is latched and another set of input values is applied to compute A3
during φ2. Note that during φ1 the Adder2 is not used anyway
because the signals are still propagating in the first half of the circuit.
Another observation is that phase φ2 can be shorter than φ1 in order
to keep the hardware units working most of the time.

Ai: Addition Operations

Adder1 Adder2

A3: (C+kD)

no addition

 A1:(U+kW) no addition

A3: (C+kD)

 A1:(U+kW) no addition

time

A2: (U+u p)o

A2: (U+u p)o

 A1:(U+kW)

ite
ra

tio
n1

ite
ra

tio
n2

ite
ra

tio
n3

A2: (U+u p)oA3: (C+kD)

1

2

2

2

1

1

Fig. 3. Scheduling of Adders in UMD Algorithm Implementation

B. Datapath

An n-bit datapath was designed to support the computations de-
scribed by the UMD algorithm and it is shown in Figure 4. Each
iteration of the algorithm is implemented in one clock cycle. The
critical path delay (the clock cycle time) is determined by the dat-
apath and control block, and it will be addressed in more detail in
Section IV-C.

C out

Latch

U LSBit of U (u) 0

clk

U out

N

P

AND

FSEL

FSEL

UC

MUX1

selS

D W

complementer

MUX2

sel d ZS

C/U

4-input n-bit Carry Save Unified Adder
 (CSUA1)

cin

3-input n-bit Carry Save Unified Adder
 (CSUA2)

N

cin

2n

2n2n

2n2n

2n

2n

n

2n2n

Fig. 4. The Unified Datapath of The Modular Divider

The proposed datapath uses two Carry-Save Unified Adders
(CSUAs) to perform addition in both GF (p) and GF (2n) fields. The
CSUA is basically formed by dual-field adders which were described
in [12] for a (3,2) design (3 inputs and 2 outputs) and in [13] for a
(4,2) design. The (3,2) dual-field adder is similar in complexity to a
full-adder and it performs bit addition with and without carry. This
functionality is enabled by the input FSEL (Field Select). When
FSEL = 0, the carry out bits are forced to 0 and the dual-field adder
performs bitwise modulo-2 addition of its inputs. When FSEL = 1,
the dual-field adder performs the bitwise addition with carry (addi-
tion in GF (p)). Another implementations of unified adders can be

used as the one proposed in [14].

CSUA1 was implemented using n (4,2) dual-field adders and
CSUA2 was implemented using n (3,2) dual-field adders. The use
of redundant form of the operands enables the circuit to have a criti-
cal path that is less sensitive to the operand precision. The addition
time is less than the time for non-redundant adder, especially for
large precision. A binary vector X is represented in CS form by two
vectors XC and XS such that X = XC + XS. Therefore, the cost
of CS representation comes from more registers and buses.

The three control lines: S, Z, and N in MUX2 corresponds to
select, zero, and negate, respectively. When Z = 1 the output of
the mux is forced to zero regardless of S. N = 1 produces a bit-
complement of the input. Since we are dealing with numbers in
two’s complement represented in CS form, the change of sign is done
by complementing each vector and adding 1. Thus, N is inserted as
carry input into both CSUAs to get the change of sign operation in
this system.

The latch between the two carry-save unified adders lets the infor-
mation at its input pass through during φ1 and holds the information
at its output when it is φ2.

The UMD algorithm computes the modular division in GF (p)
when Field = GF (p). The select signal S is synchronized with the
latch. MUX2 is used to implement k ∗ D and k ∗ W , where k ∈
{-1,1}. In the case k = −1, the negative D and the negative W are
obtained by setting N = 1. Both signals Z and N are synchronized
with the main clock (clk).

If C is even, then it is shifted right one bit and the counter δ is
decremented by one. If not, we test δ, if it is negative, the circuits
swap the values of C and D, and U and W , and change the sign of
δ. The swap operation is performed by the Swapping Network that
precedes the datapath and takes its inputs from the C, U , D, and
W registers.

The test (C + D) mod 4 6= 0 can be implemented using a small
two-level gate network.

The addition U := (U+k∗W) which corresponds to A1 in Figure 3,
is performed in the first phase of the clock signal (φ1) using the
CSUA1. During φ2, two separate additions happen: C := (C+k∗D)
(A3 in Figure 3) using CSUA1, and U := (U + u0 ∗ p) (A2) using
CSUA2. Both outputs are shifted to the right by one bit to complete
the algorithm operations.

An AND gate is used to select between the value 0 or the modulus
p depending weather U is even or odd, respectively.

If the algorithm is computing the modular division in GF (2n),
the same procedure described above is followed, except that the test
(C + D) mod 4 6= 0 is not applicable (Field = GF (2n)). For both
fields, the computation is done when C = 0, and the result is Z = W .

It can be shown that the UMD algorithm does not change the
values of the operands once C = 0. Therefore, the test C = 0 can
take several clock cycles. Another observation shows that the non-
redundant representation of C = 0 takes only some particular values,
which makes this test easier. So, using these two features we can
make the test of zero for the CS representation simple and multi-
cycle, allowing the design to be fast without a significant increase
in area. Another possibility is to use counters to estimate when C
reaches 0.

The Swapping Network shown in the datapath is composed of two-
input muxes. The control signal (SEL) selects between the inputs.
The two possible configurations of the Swapping Network are shown
in Figure 5 (when SEL=0 or 1).

WDUC

WDUC

SEL=0

WDUC

WDUC

SEL=1

Fig. 5. The Two Possible Configurations of The Swapping Network.

C. Improving The System Performance

Figure 6 shows the critical path of the unified divider which will
determine the clock period of the design.

clock period = 2 ∗max(delayφ1, delayφ2)

From the figure it is clear that φ1 is longer than φ2. There are two
possibilities for the delays in φ2 as shown in Figure 6, coming from
the paths that include CSUA1 or CSUA2. Noticing that the delay
of CSUA2 is smaller than the delay of CSUA1, the upper path is
longer, so it is considered as the delay of φ2.

reg swap MUX2 complementer CSUA1 3-state bufferCSUA1MUX2

ANDreg

 complementer

CSUA2 3-state buffer
1

2

Fig. 6. The Delay Paths of The Modular Divider.

Since that delayφ1 > delayφ2, the delay of φ1 determines the
clock period of clk. In this case clk will have a 50% duty cycle.
More performance could be extracted from the circuit if φ2 could
be made shorter. However, such a solution would involve critical
implementation details for the design of the clock signal generator
and clock distribution network.

V. Experimental Results and Comparisons

This section includes two categories of experimental results: (a)
average number of iterations obtained from a Maple model and (b)
the critical path delay results obtained by synthesis of the VHDL
description of the algorithm.

A. The Average Number of Iterations

Maple was used to describe the proposed algorithm (Alg1 = UMD
algorithm) and the unified Montgomery inverse algorithm presented
in [3] (Alg2). At least 100 random samples were used to verify each
algorithm operation and obtain statistics.

For consistency, no multiple-word calculation is considered here.
For an n−bit input Y , Alg2 computes Z = Y −12k, where n ≤ k ≤ 2n
is the number of algorithm iterations. A correction step is needed to
get the inverse in the Montgomery domain (Y −12n) or in the integer
domain (Y −1). Therefore, the total number of iterations required to
compute the Montgomery inverse is 2k − n. To compute the integer
inverse it needs 2k iterations.

Also, Alg2 uses number comparisons to compare the size of the
bit vectors that represent elements in the field (the same way it was
done in [2], [7], [8]) instead of the counter (δ). These comparisons
are expensive in both fields. On the other hand, the UMD algorithm
has only additions which has a complexity of O(1) since we are using
redundant representation. The number of additions gives an idea of
the overall work done by the algorithm. It was shown in [6] that
Alg1 has up to 9% (5%) fewer additions than Alg2 when computing
integer inverse in GF (p) (GF (2n)). The comparisons were consid-
ered as an extra addition. There are k comparisons in Alg2. It is
important to mention that this assumption is very conservative since
the complexity of a comparison is much higher than the complexity
of a redundant addition. From the above discussion we can say that
the comparison limits a fast hardware implementation.

Figure 7 shows the number of iterations as a function of operand
size required by Alg1 (UMD) and Alg2 (presented in [3]) to compute
the integers modular inverse (not in Montgomery domain) in GF (p)
and GF (2n). The size of the operands is in the range (160 to 512)
bits.

One can see from the figure that Alg1 executes on average 25%
fewer iterations than Alg2 when computing the inverse in the integer
domain for GF (p). For GF (2n), Alg1 has about 40% fewer iterations
than Alg2 when computing the inverse in the integer domain. As
discussed before, Alg2 has a more complex iteration than the UMD
algorithm and therefore, the UMD algorithm presented in this paper
is much faster than the unified Montgomery algorithm presented in
[3].

0

200

400

600

800

1000

1200

1400

1600

1800

0 100 200 300 400 500 600

Operand size (bits)

Ite
ra

tio
ns

Alg1 GF(p)

Alg2 GF(p)

Alg1 GF(2^n)

Alg2 GF(2^n)

Fig. 7. The Number of Iterations as a Function of Operand Size
Required by Alg1 (UMD) and Alg2 to Compute The Modular
Inverse in GF (p) and GF (2n)

Notice that the number of iterations for the UMD algorithm in
both fields increase linearly with the increase in the operand preci-
sion.

The public-key processor presented in [7] implements operations
required for Elliptic Curve Cryptography (ECC) including modular
inverse in GF (2n) only. It is mentioned in [7] that the GF (2n) inver-
sion operation takes about 3.3 cycles for each bit. Figure 7 shows that
the UMD algorithm needs only 2 cycles/bit to compute the modular
inverse in GF (2n).

The dual-field arithmetic unit proposed in [8] performs one addi-
tion in each clock cycle and the adder is used to convert from carry-
save form to non-redundant representation, significantly increasing
the number of clock cycles. So, the only way to compare our algo-
rithm with [8] is to compare the number of additions. It is shown in
[6] that the number of additions reported in [8] is around 20 times
greater than the number of additions in Alg1.

The comparison of the UMD algorithm with [2] was not considered
because the work in [2] is a word-based algorithm that applies several
strategies (variable shift, for example) to reduce the number of cycles.

B. Synthesis Results

The experimental data presented in this section were generated
using Mentor Graphics CAD tools. The target technology was set to
AMI05 fast auto (0.5 µm CMOS with hierarchy preserved) provided
in the ASIC Design Kit (ADK) from the same company [15].

The unified modular divider design presented in this paper was
described in VHDL and simulated in ModelSim for functional cor-
rectness. It was synthesized using Leonardo synthesis tool for the
mentioned technology. ADK provides a consistent environment for
comparison between the designs, and a reasonable approximation of
the system performance when using commercial ASIC technology.

Figure 8 shows the critical path delays (in nano-seconds) of the
UMD design for the precision range from 128-bit to 512-bit. The
delay at 128-bit is 10.01 nsec, at 256-bit is 10.85 nsec, and at 512 is
10.86 nsec. From the figure we can notice that the delay increases
as the number of bits increase and it seems to became constant at
higher precision. This indicates that the critical path delay (clock
period) of the UMD algorithm become independent of the operands
size at high precisions.

The public-key processor presented by Goodman and et.al in [7]
runs at clock rate of 50 MHz (clock period = 20 nsec), and it is
considered a good representative of this class of hardware designs.
The divider proposed in this work has a worst case clock period of
less than 11 nsec at 512-bit operand size, which is twice faster than
the processor presented in [7]. Also, as we mentioned in the previous
subsection, Goodman’s processor, from now on called GµP takes 3.3
cycles/bit to perform a modular inverse in GF (2n). Let the total
computation time of a given design be Tdesign which is given by:

Tdesign = cycles/bit ∗ n ∗ clock period.

where n is the operand size in bits. At n = 512-bits, the total

12

13

0 100 200 300 400 500 600

Operand size (bits)

T
im

e
(n

an
o

se
co

nd
s)

Fig. 8. The Critical Path Delay of The UMD Design in nano-
seconds.

Operand size (bits) Area (gates)
128-bit 22853
160-bit 28560
192-bit 34227
224-bit 39913
256-bit 45600
512-bit 91090

TABLE I

The Area of the UMD Design in gates for different

operand sizes

computation time of GµP (TGµP) will be:

TGµP = 3.3 ∗ 512 ∗ 20× 10−9 = 33.79µsec

and the total computational time for our design (TUMD) will be:

TUMD = 2 ∗ 512 ∗ 10.86× 10−9 = 11.12µsec

Comparing TGµP and TUMD, we find that the UMD design is 3
times faster. Also, even when we run the proposed divider circuit at
50 MHz we get TUMD = 2 ∗ 512 ∗ 20 × 10−9 = 20.48 µsec which is
still 1.65 times faster than the design in [7].

Table I shows the total number of gates for the UMD design
as a function of operand size. The area for the UMD design can
be extracted from the experimental data presented in Table I as
AUMD = 177.7 ∗ n + 108. From this equation we can say that the
proposed divider design has area complexity of O(n).

The architecture presented in [9] is dedicated to GF (2n) only. The
authors mentioned that the design has an area complexity of O(n)
without specifying any constants.

The proposed design in [16]is also dedicated to GF (2n) only and
has an area complexity of O(nlog(n)).

VI. Conclusion

The proposed Unified Modular Divider architecture that imple-
ments the UMD algorithm proposed in [6] can compute the inverse
in both GF (p) and GF (2n) fields in an efficient way. To the best of
our knowledge, this is the first unified division/inversion architecture
to use a counter to keep track of the difference between the values
of elements in the field. The number of clock cycles required by the
UMD divider is 2n in the worst case while another published design
executes division in 3.3n cycles. The datapath uses pipelining based
on scheduling analysis which makes the best use of the hardware re-
sources in the divider, therefore, the datapath efficiently implements
the iterations of the UMD algorithm with two adders only. The area
complexity of the proposed design is O(n).

The use of redundant unified adders significantly reduces the crit-
ical path delay (and as a result the total computation time) making
the proposed architecture faster than many other previously proposed
designs. The low time and area complexity of the proposed archi-
tecture and its efficient datapath makes it suitable for cryptographic
hardware applications.

Acknowledgements This work was supported by the NSF CA-
REER grant CCR-0093434.

References

[1] G. B. Agnew, R. C. Mullin, and S. A. Vanstone, “An imple-
mentation of elliptic curve cryptosystems over GF (2155),” IEEE
Journal on Selected Areas in Communications, vol. 11, no. 5,
pp. 804–813, 1993.

[2] A. A. Gutub, A. F. Tenca, E. Savas and C. K. Koc , “Scalable
and unified hardware to compute Montgomery inverse in GF (P)
and GF (2n),” in Cryptographic Hardware and Embedded Sys-
tems — CHES 2002, B.S. Kaliski Jr. et al., Ed. 2003, Lecture
Notes in Computer Science, No. 2523, pp. 484–499, Springer,
Verlag Berlin Heidelberg 2003.

[3] E. Savas and C. K. Koc, “Architectures for unified field inver-
sion with applications in elliptic curve cryptography,” in The
9th IEEE international conference on Electronic, Circuits and
systems-ICECS 2002.

[4] D. E. Knuth, The Art of Computer Programming, Volume 2,
Seminumerical Algorithms, Third edition, 1998.

[5] N. Takagi, “A vlsi algorithm for modular division based on the
binary gcd algorithm,” IEICE Trans. fundamentals, vol. E81-A,
no. 5, pp. 724–728, May 1998.

[6] Alexandre F. Tenca and Lo’ai A. Tawalbeh, “ An Algorithm
for Unified Modular Division in GF (p) and GF (2n) Suitable for
Cryptographic Hardware,” IEE Electronics Letters, vol. 40, no.
5, pp. 304–306, March 2004.

[7] J. Goodman and A. P. Chandrakasan, “An energy-efficient re-
configurable public-key cryptography processor,” IEEE Journal
of solid-state circuits, vol. 36, no. 11, pp. 1808–1820, November
2001.

[8] J. Wolkerstorfer, “Dual-field arithmetic unit for gf(p) and
gf(2n),” in Cryptographic Hardware and Embedded Systems
— CHES 2002, B.S. Kaliski Jr. et al., Ed. 2003, Lecture Notes
in Computer Science, No. 2523, pp. 484–499, Springer, Verlag
Berlin Heidelberg 2003.

[9] A. D. Daneshbeh and M. A. Hasan, “A unidirectional bit serial
architecture for double-bases division over GF (2m),” in IEEE
16th Symposium on Computer Arithmetic. 2003, IEEE Com-
puter Society Press, Los Alamitos, CA.

[10] M. E. Kaihara and N. Takagi, “A vlsi algorithm for modular
multiplication/division,” in IEEE 16th Symposium on Com-
puter Arithmetic. 2003, IEEE Computer Society Press, Los
Alamitos, CA.

[11] M. Stan, A. Tenca, and M. Ercegovac, “Long and fast up/down
counters,” IEEE Transactions on Computers, vol. 47, no. 7, pp.
722–734, July 1998.

[12] E. Savas, A. F. Tenca, and Ç. K. Koç, “A scalable and uni-
fied multiplier architecture for finite fields GF (p) and GF (2m),”
in Cryptographic Hardware and Embedded Systems — CHES
2000, Ç. K. Koç and C. Paar, Eds. 2000, Lecture Notes in Com-
puter Science, No. 1717, pp. 281–296, Springer, Berlin, Ger-
many.

[13] E. Savas A. F. Tenca and C. K. Koc, “A design framework
for scalable and unified multipliers in GF (p) and GF (2n) ,”
International Journal of Computer Research, To appear 2004.

[14] L.-S. Au and N. Burgess, “Unified radix-4 multiplier for
GF (p) and GF (2n),” in The IEEE International Conference
on Application-Specific Systems, Architectures, and Processors
(ASAP’03), The Hague, The Netherlands, June 24-26 2003, pp.
226–232.

[15] ASIC Design Kit. Mentor Graphics Co,
“http://www.mentor.com
/partners/hep/AsicDesignKit/dsheet/ami05databook.html,” .

[16] J-H. Guo and C-L. Wang, “Systolic array implementation of Eu-
clid’s algorithm for inversion and division in GF (2m),” IEEE
Transactions on Computers, vol. 47, no. 10, pp. 1161–1167, Oc-
tober 1998.

