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Abstract
The multiplication operation in finite fields GF (p)

and GF (2n) is the most often used and time-
consuming operation in the harware and software re-
alizations of public-key cryptographic systems, partic-
ularly elliptic curve cryptography. We propose a new
hardware architecture for fast and efficient execution
of the multiplication operation in this paper. The pro-
posed architecture is scalable, i.e., can handle operands
of any size; only limited by input/output and scratch
space size, not by computational unit. It can also be
configured to fit the available chip area for the de-
sired performance. Our proposed architecture com-
putes multiplication faster in GF (2n) than GF (p),
which conforms with premise of GF (2n) for hardware
realizations.

I. Introduction
One of the motivations for fast and area efficient

hardware solutions for multiplications in finite fields
GF (p) and GF (2n) comes from the fact that they are
the most time-consuming operations in cryptographic
applications such as the decipherment operation of the
RSA algorithm [1], the Diffie-Hellman key exchange
algorithm [2], the Government Digital Signature Stan-
dard [3] and also recently elliptic curve cryptography
[4].
In this paper, following the design principles intro-

duced in [7], we present a novel scalable multiplier
architecture that is unified in the sense that multi-
plication for both GF (p) and GF (2n) is performed
in the same datapath. Furthermore, the novelty pre-
sented here is that the multiplier works with radix-4
for GF (2n) and radix-2 for GF (p). Therefore, the ar-
chitecture is referred as dual-radix. We will discuss
the effects and advantages of these techniques on the
chip area, signal propagation time and the clock cycle
count to complete a multiplication operation.
A. Previous Work
The multiplier architecture presented here is based

on the Montgomery multiplication algorithm which is
originally proposed as an efficient method for doing
multiplication operation in GF (p) [5]. The algorithm
replaces division operation with simple shifts, which
are particularly suitable for implementation in hard-
ware as well as in software on general-purpose com-
puters. Therefore, the Montgomery multiplication al-
gorithm generally allows to design a hardware unit
with shorter signal propagation time (higher maxi-
mum clock frequency) besides taking advantage of cer-
tain design optimizations such as systolic array [6] and
pipeline organizations [7].
In [8], it is also shown that Montgomery multipli-

cation might be very efficient in GF (2n), when poly-

nomial basis is used. Since the steps of the Mont-
gomery multiplication algorithm for both fields are al-
most identical, it is possible to design a unified archi-
tecture. Feasibility and advantage of designing such a
unified multiplier architecture for elliptic curve cryp-
tography have been extensively discussed in [7], [9].
Various hardware implementations of the Mont-

gomery multiplication algorithm for limited precision
operands were proposed in [10]. Implementations uti-
lizing high-radix modular multipliers have also been
proposed in [11]. Aspects of using high-radix repre-
sentation have been discussed in [12]. Even though
very high-radix designs have certain complications in
hardware, moderate radix values offer faster alterna-
tives to simple radix-2 multiplier designs.
The original unified multiplier in [7] uses radix-2

design and offers an equal performance for both GF (p)
and GF (2n) of same precision. For this very reason,
however, the original design is not optimized since it
does not take the advantage of using GF (2n), which
is, in general, more efficient than GF (p) in hardware
implementations. Our first observation is that this
situation can be remedied by putting to use the part of
the circuitry which is underutilized in GF (2n) mode.
This allows us to run the multiplier module in higher
radix values for GF (2n) than those for GF (p) without
significantly increasing the design complexity.

B. Montgomery Multiplication Algorithm
In [5], Montgomery described a modular multiplica-

tion method which proved to be very efficient in both
hardware and software implementations. An obvious
advantage of the method is the fact that it replaces
division operations with simple shift operations. The
method adds multiples of the modulus rather than
subtracting it from the partial result. Refer to [5].
for detailed explanation of the algorithm.
Given two integers a and b, and a prime modulus

p, the Montgomery multiplication algorithm computes
c̄ = MonMult(a, b) = a · b · R−1 (mod p) where
R = 2n and a, b < p < R and p is an n-bit prime num-
ber. The Montgomery multiplication does not directly
compute c = a · b (mod p), therefore certain trans-
formation operations must be applied to the operands
a and b before the multiplication and to the interme-
diate result c̄ in order to obtain the final result c. T
The Montgomery multiplication algorithm with

radix-2k for GF (p) can be given as in the following:
Algorithm A
Input: a, b ∈ [1, p − 1], p, and m
Output:c ∈ [1, p− 1]
1: c := 0
2: for i = 0 to m − 1
3: q := (c0 + ai · b0) · (p′0) (mod 2k)



4: c := (c + ai · b + q · p)/2k

where p′0 = 2k−p−1
0 (mod 2k). In the algorithm, the

multiplier a is written with base (radix-2k) and digits
ai so that a =

∑m−1
i=0 ai ·2k·i, where m is the number of

digits in a and m = �n/k�. In Step 4, the multiplicand
b, the modulus p, and the partial result c enter the
computations as full-precision integers. However, in
our implementation we will treat b, p, and c as multi-
word integers in order to design a scalable multiplier
and in each clock cycle one word of these values will
be processed. One may also consider this representa-
tion as writing the multiplicand, the modulus and the
partial result with digits b(j), p(j), and c(j) of w bits,
so that b =

∑e−1
j=0 b(j) · 2w·j, p =

∑e−1
j=0 p(j) · 2w·j, and

c =
∑e−1

j=0 c(j) · 2w·j where e = �n/w�. Note that the
base-2w used to represent b, p, and c in Step 4 is differ-
ent from the radix-2k used to represent the multiplier
a in Step 3. Note also that q, c0, b0, and p′0 are all
k-bit integers.
In order to avoid a possible confusion due to the

usage of two different bases, we elect to refer the digits
of b, p and c as words when implementing Step 4, and
use the term digit exclusively for the multiplier a, and
for b0, p′0, and c0 in Step 3 when they are in the same
equation with the digits of a. Digits can be easily
distinguished by the subscript notation (e.g. ai or b0)
from superscript notation of word (e.g. b(j)). We will
also use the notation xi,j to denote the jth bit in the
ith digit of x.
In addition, the radix of the multiplier architecture

is determined by the base used to represent the mul-
tiplier a.
The Montgomery multiplication algorithm for

GF (2n) is given below:
Algorithm B
Input: a(x), b(x), p(x), and m
Output: c(x)
1: c(x) := 0
2: for i = 0 to m − 1
3: q(x) := (c0(x) + ai(x) · b0(x)) · p′0(x) (mod xk)
4: c(x) := (c(x) + ai(x) · c(x) + q(x) · p(x))/xk

where p′0(x) = p−1
0 (x) (mod xk). The two algo-

rithms are almost identical except that the addition
operation in GF (p) becomes a bitwise modulo-2 ad-
dition in GF (2n). In Algorithm A, there must be an
extra reduction step at the end to reduce the result
into the desired range if it is greater than the modu-
lus. On the other hand, this step is not essential part
of the algorithm and there are simple conditions that
can be added to the algorithm in order to eliminate it
[13], hence we intentionally exclude it from the algo-
rithm definitions.
From this point on, we will only use the nota-

tion introduced in Algorithm A for both GF (p) and
GF (2n) and leave polynomial notation completely out
of our representation of field elements in GF (2n). Op-
erations will be deduced from the mode (GF (p) or
GF (2n)) in which the module is operated. The ele-
ments of both fields are represented identically in the
digital systems.

C. Precomputation in Montgomery Multi-
plication Algorithm

The unified multiplier architecture introduced in the
next section utilizes a precomputation technique in or-
der to decrease the critical path delay of the original
unified multiplier in [7]. Note that Step 4 of the Al-
gorithm A computes

c := (c0 + ai · b + q · p)/2k.

Depending on the radix value chosen, the LSDs of the
operands, ai, b0, and c0 will determine which one of
the values in {0, b, p, b+ p, 2p, 2b, 2b+2p, . . .} is added
to the partial result c. If one precomputes and stores
the value of b + p, the calculations in Step 4 can be
significantly simplified.
There are three implications of the precomputation

technique. First, the fact that an adder must be avail-
able to perform the precomputation potentially leads
to an increase in the chip area. However, we show that
such an adder is already an integral part of our design
and the precomputation will be done without any ex-
tra overhead in this sense. Second, the precomputed
value must be stored. This will imply an increase in
the register space. And finally, there must be a so-
called selection logic to select which multiples of b and
p must participate in the addition in Step 4. The selec-
tion logic will be naturally on the critical path and can
potentially result in both an increase in the chip area
and critical path delay. On the other hand, the pre-
computation technique also simplifies the design since
Step 4 can be performed with only one addition, once
the selection logic generates its output. We will pro-
vide implementation results to expose the effects of the
precomputation technique in the multiplier design.

II. Radix-(2,4) Multiplier Architecture
In this section, we present a unified and scalable

multiplier architecture which operates in radix-2 in
GF (p) mode and in radix-4 in GF (2n) mode. and the
architecture is called radix-(2,4).
A. Processing Unit
In this section, we explain the design details of the

processing unit (PU) which is basically responsible for
performing Step 3 and Step 4 of Algorithm A.
Since the multiplier uses radix-2 for GF (p), the

least-significant bits (LSB) of the operand digits, ai,
b0, and c0 will determine which one of the values in
{0, b, p, b + p} is added to the partial result c. In the
case of GF (2n), multiplication is performed in radix-
4. Therefore, the LSDs (least significant digits) of
b, p, and c and of the current digit of a are in or-
der to determine q. The LSB of p is always 1, then
only p0,1, the second least significant bit of the mod-
ulus, is included in the computations. Consequently,
ai,1, ai,0, b0,1, b0,0, c0,1, c0,0 and p0,1 determine one of
the following values to be added to the partial result:
{0, b, p, b+ p, x · b, x · p, x · (b + p)}.
In Figure 1, the architecture of the processing unit

(PU) used in the dual-radix multiplier is illustrated.
The local control logic in Figure 1 contains the selec-
tion logic which generates the signals, m00, m01, m10,
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Fig. 1. Processing unit of dual-radix architecture with radix-2 for GF (p) and radix-4 for GF (2n)

and m11, to determine which multiples of b and p will
be in the calculations. cc0 and cs0 in Figure 1 are the
least significant digits of carry and sum part of the
partial result c.
The dual-radix architecture consists of one or more

processing units (PU), identical to the one shown in
Figure 1, organized in a pipeline. Each PU takes a
digit (k-bits) from the multiplier a, the size of which
depends on the radix and the mode (finite field), and
operates on the words of b, b+ p, c and p successively
starting from the least significant word. Starting from
the second cycle it generates one word of partial result
each cycle which is communicated to the next PU. Af-
ter e+ 1 clock cycles, where e is the number of words
in the modulus (i.e. e = �n/w�), a PU finishes its
portion of work and becomes free for further compu-
tation. One can refer to [7] for more information about
the pipeline organization.
A redundant representation (Carry-Save) is used for

the partial result in the architecture. Thus, for the
partial result we can write c = cc + cs, where cc and
cs stand for the carry and sum part of the partial re-
sult. Redundant format necessitates an extra addition
operation to transform the final result into nonredun-
dant format at the end of the calculations. The trans-
formation operation is simply performed by a carry
propagate adder (e.g. carry look-ahead adder) which
is also capable of doing modulo-2 addition operation in
GF (2n)-mode. The existence of an adder is also useful
for performing the precomputation of b + p, which is
used during multiplication.
B. (3, 2) Adder Array
An n-bit (3, 2) adder array shown in Figure 1 con-

sists of two parts: single-bit dual-field adders (DFA)
and shift-and-alignment layer as demonstrated in Fig-
ure 2. When used in GF (p)-mode, the DFA simply
becomes a Carry-Save adder. A DFA cell is basically
a full-adder capable of doing addition with or with-
out carry. It has an input called FSEL that enables
this functionality. Our implementation results demon-
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Fig. 2. Dual Field Adder Array for radix-(2,4) Unified Multi-
plier

strated that this additional functionality is obtained
almost without any cost.
C. Selection Circuitry
As stated previously, the selection logic for radix-

(2,4) multiplier, which is shown in Figure 3, deter-
mines which of the inputs of MUX-0 and MUX-1 in
Figure 1 are to be added in (3, 2) adder array, which
in turn calculates c := c + ai · b + q · p.
In GF (p)-mode the multiplier uses radix-2, hence

m00 and m01 must be calculated while m10 and m11
are forced to be 0 since input 0 of MUX-1 is always se-
lected in this mode. We can use the following formulae
to express the control inputs of MUX-0.

m00 = ai,0

m01 = q0 = (cs0,0 ⊕ cc0,0 ⊕ ai,0 · b0,0)

where ⊕ stands for modulo-2 addition, ai,j denotes
jth bit of the digit ai and qj is the jth bit of q, and
csi,j and cci,j are the sum and carry bits of the partial
result, respectively.
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Fig. 3. Selection logic for radix-(2,4) multiplier

On the other hand, the multiplier computes with
radix-4 in GF (2n)-mode. Thus, the select inputs of
MUX-1 must also be calculated. For this, we use the
formulae

m10 = ai,1 · FSEL

m11 = q1 = [(cs0,1 ⊕ ai,0 · b0,1 ⊕ ai,1 · b0,0)

⊕(cs0,0 ⊕ ai,0 · b0,0) · p0,1] · FSEL

Note that the first input of MUX-1, cc is always zero in
this mode since redundant form is also used for partial
result and the carry part of it is forced to be zero.

III. Implementation results
We implemented processing units of two different

multiplier architectures: (A1) the original unified
multiplier in [7], and (A2) radix-(2,4) multiplier. We
used VHDL to implement two architectures and syn-
thesized the resulting code using Mentor Graphics
tools for an ASIC technology of 0.5µm AMI CMOS
(ADK library [14]).
Figure 4 demonstrates the area and time delay of

two different PU designs, using different word sizes.
Area consumption is always given in terms of 2-input
NAND gates. Due to the highly modular nature of
the design, the critical path of a PU determines the
maximum clock frequency that can be applied to the
whole multiplier.
As can easily be observed from Figure 4, there is

an increase in area of the new architecture. There
are two basic reasons for this increase: (1) having
an extra interstage register for passing the precom-
puted value, b + p, to the next stage, (2) selection
logic. The selection logic becomes more complicated
due to what may be appropriately called as a look-
ahead technique which processes the least-significant
bits of the operands. The fact that two least signif-
icant bits of some operands are needed in the look-
ahead technique partially explains the further increase
in the area. More complicated shift-and-alignment
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Fig. 4. Implementation results: Critical path delay and area

layer is another reason for larger area usage in the
dual-radix design. Note also that, the relative increase
in area becomes less significant as the word size also
increases. This can also be explained by the fact that
the area of selection logic is independent of word size.
When w = 32, the area consumed by the selection
logic becomes less significant. For example, increase
in area in the dual-field multiplier (A2), 45% when
w = 32. The use of the precomputation technique in
the architecture A2 improves the critical path delay
by 18% to 23%.
The performance of the two multipliers in terms of

clock cycle count to perform a multiplication is deter-
mined, to a large extent, by the number of PUs (t)
and the word size (w), which is subject to the limi-
tations on the silicon area available. Therefore, the
relative increase in the area of a PU may be mislead-
ing in evaluating the overall performance of the new
architectures. Two architectures utilize many PUs or-
ganized in a pipeline. To provide more insight in the
overall effect of the new architecture on the area and
time, we investigated the time to compute multipli-
cation for a precision range of cryptographic interest
given a limited area. Figure 5 demonstrates the results
for multiplier configuration in GF (p)-mode with ap-
proximately 30, 000 gates. We basically designed the
multipliers for each architecture by putting as many
PUs as possible.
In this configuration, the new architecture, A2, of-

fer a significant speedup in time performance over the
original architecture A1 for the range of [160,∼ 500].
Beyond the precision of 500 bits, higher area require-
ments of new architectures will have a negative im-
pact on the performance. For the same area the
new architecture, A2 is by 13% to 35%. Note that
the maximum speedup in the new architectures, ex-
ceeds the maximum speedup provided by a single PU.
This is due to the fact that having more PUs not al-
ways improves the performance, hence may result in
a slight degradation for some bit lengths. The dual-
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radix architecture offers a significant speedup over A1
in GF (2n)-mode. It outperforms A1 by 56% to 67%
in this mode.

IV. Summary and Conclusions
Using the design methodology proposed in [7], we

presented a new unified multiplier architecture called
dual-radix architecture for binary extension and prime
fields. The architecture utilizes a precomputation
technique and improves critical path delay signifi-
cantly. The cost of implementing the precomputation
technique in hardware in terms of area is studied and it
has been concluded that the overall impact is insignif-
icant for a large range of precision. The dual-radix
architecture also facilitates faster computation of mul-
tiplication in GF (2n)-mode than GF (p)-mode. The
area and speed characteristics of the dual-radix archi-
tecture is also extensively investigated and its perfor-
mance in terms of area and time is compared against
single-radix, unified multiplier architecture. At the ex-
pense of using extra resources, which proved to have a
very limited impact on the silicon area under certain
circumstances, it provides significant improvement in
critical path delay compared to the original unified de-
sign in both GF (p) and GF (2n)-modes. Furthermore,
it provides a superior performance in GF (2n)-mode.
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