
A Less Recursive Variant of Karatsuba-Ofman Algorithm
for Multiplying Operands of Size a Power of Two ∗

Serdar S. Erdem†

Gebze Ÿuksek Teknoloji Enstiẗus̈u
Elektronik Mühendislǐgi Bölümü

Gebze 41400 Kocaeli, Turkey
erdem@gyte.edu.tr

Çetin K. Koç
Oregon State University

Electrical & Computer Engineering
Corvallis, Oregon 97331, USA

koc@ece.orst.edu

Abstract

We propose a new algorithm for fast multiplication of
large integers having a precision of2k computer words,
wherek is an integer. The algorithm is derived from the
Karatsuba-Ofman Algorithm and has the same asymptotic
complexity. However, the running time of the new algorithm
is slightly better, and it makes one third as many recursive
calls.

1 Introduction

Multi-precision integer arithmetic is used in many ap-
plications, including cryptography. Efficient software im-
plementations of multi-precision operations are nededed
for several public-key cryptographic systems, for example,
RSA, Diffie-Hellman, and Elliptic Curve Digital Signature
Algorithms [10, 2, 4, 9]. Among the arithmetic opera-
tions, the multi-precision multiplication is one of the most
time consuming operations with itsO(n2) complexity. The
Karatsuba-Ofman Algorithm (KOA) is a fast multiplica-
tion algorithm for multi-precision numbers withO(n1.58)
asymptotic complexity [5, 6, 7]. We modify this algorithm
and obtain a less recursive algorithm. However, our algo-
rithm works only if the operand size is a power of two in
computer words, bytes, digits, etc. In this paper, we de-
scribe KOA, the new algorithm, and give their analyses.
The detailed proofs of the analyses are omitted in this pa-
per for brevity, and can be found in [3]. We also give an
example of multiplication using the new algorithm and the
results of our implementations comparing KOA and the new
algorithm.

∗The reader should note that Oregon State University has filed US and
International patent applications for inventions described in this paper.

†This work was performed while the first author was with Oregon State
University.

2 Multi-Precision Numbers and Operations

In this paper, the variables in bold face denote multi-
precision numbers. Leta be ann-digit number represented
in basez. We denote the digits ofa from the most signifi-
cant to least significant bya[n− 1],a[n− 2], · · · ,a[0], i.e.,

a = a[n − 1]zn−1 + · · · + a[1]z + a[0] .

Also, al[k] denotes anl-digit number whosejth digit is
a[k + j], i.e.,

al[k] = a[k + l − 1]zl−1 + · · · + a[k + 1]z + a[k] .

We use the following operations on multi-digit numbers:

• The addition or subtraction of twon-digit numbers
produces anothern-digit number and an extra bit. This
extra bit is a carry bit for addition or a borrow (sign) bit
for subtraction. Multi-precision addition and subtrac-
tion are relatively easy operations. For further details
and implementation, refer to [6, 8].

• Becausez = 2w, multiplying a number withzi is
equivalent to shifting the words in its array representa-
tion by i positions. Thejth word becomes the(i+j)th
word and the0th through(i−1)th words are filled with
zeros.

• We can assign a value to the subarray of a number. The
assignmental[k] := b overwrites the digits ofa in our
notation. The digitsa[k + i] for i = 0, · · · , l − 1 are
replaced with the digitsb[i] for i = 0, · · · , l − 1.

We can also define more complex operations for multi-
digit numbers using our notation. For example, the opera-
tion

(c, tl[k]) := al[k′] + bl[k′′]

1

adds thel-digit numbersal[k′] andbl[k′′] derived froma
andb. It then stores the result intl[k] and the carry bit inc.
More explicitly, the following code segment is performed:

c := 0
for i = 0 to l − 1

(c, t[k + i]) := a[k′ + i] + b[k′′ + i] + c
endfor

3 Karatsuba-Ofman Algorithm (KOA)

The classical multi-precision multiplication algorithm
multiplies every digit of a multiplicand by every digit of the
multiplier and adds the result to the partial product. It has
O(n2) complexity, wheren is the operand size (number of
digits). KOA is an alternative multi-precision multiplication
method [5]. KOA hasO(n1.58) complexity and thus it mul-
tiplies large numbers faster than the classical method. KOA
is a recursive algorithm and follows a divide and conquer
strategy.

Let a andb be twon-digit numbers in radixz wheren
is even. We can split them in two parts as

a = aL + aHzn/2 , b = bL + bHzn/2 ,

whereaL = an/2[0], bL = bn/2[0], aH = an/2[n/2], and
bH = bn/2[n/2]. This meansaL andbL are the numbers
represented by the low order digits (the firstn/2 digits),
while aH andbH are the numbers represented by the high
order digits (the lastn/2 digits). We can writet = a · b in
terms of the half-sized numbersaL, bL, aH, andbH as

t = a · b
= (aL + aHzn/2)(bL + bHzn/2)
= aLbL + (aLbH + aHbL)zn/2 + aHbHzn .

Thus, we can compute the productt from 4 half-sized prod-
uctsaLbL, aLbH, aHbL, andaHbH. On the other hand,
following the idea of KOA, we can use the equality

aLbH +aHbL = aLbL +aHbH +(aL − aH)(bH − bL)

in the above equation and obtain

t = aLbL + [aLbL + aHbH +
(aL − aH)(bH − bL)]zn/2 + aHbHzn . (1)

The equation above shows that only 3 half-sized multiplica-
tions are sufficient to computet instead of 4. These prod-
ucts areaLbL, aHbH and(aL − aH)(bH − bL). We ob-
tain this decrease in the number of products at the expense
of more additions and subtractions.

KOA computes a product from 3 half-sized products us-
ing Eq. (1). In the same fashion, KOA computes each

of these half-sized products from 3 quarter-sized products.
This process goes recursively. When the products get very
small (for example, when their operands reduce to one
digit), the recursion stops and these small products are com-
puted by the classical method.

The following recursive function implements KOA. We
assume that the inputs can be split into lower and higher
order digits evenly in each recursion. As a consequence,
the input sizen is required to be a power of two. Of course,
one can also write a general KOA function which splits its
inputs approximately when the input size is an odd number.

function: KOA(a,b : n-word number;n : integer)
t : 2n-digit number
aL,aM,aH : (n/2)-digit number
low,mid,high : n-digit number
/*** When the input size is one digit ***/
Step 1: ifn = 1 then returnt := a[0] · b[0]
/*** Generate 3 pairs of half-sized numbers ***/
Step 2: aL := an/2[0]
Step 3: bL := bn/2[0]
Step 4: aH := an/2[n/2]
Step 5: bH := bn/2[n/2]
Step 6: (sa,aM) := aL − aH

Step 7: (sb,bM) := bH − bL

/*** Multiply the half-sized numbers ***/
Step 8: low := KOA (aL,bL, n/2)
Step 9: high := KOA (aH,bH, n/2)
Step 10: mid := KOA (aM,bM, n/2)
/*** Combine the subproducts ***/
Step 11: t := low + (low + high + sasbmid)zn/2+

highzn

Step 12: returnt

In Step 1, we check ifn = 1. If the input operands are
1-digit, we multiply the inputs and return the result. If not,
we continue with the remaining steps. In Steps 2 through
5, (n/2)-digit numbersaL, bL, aH andbH are generated
from the lower and higher order digits of the inputs. In Steps
6 and 7, we obtainaM, bM, sa andsb using the subtraction
operations as described below

sa = sign(aL − aH) , aM = |aL − aH| ,
sb = sign(bH − bL) , bM = |bH − bL| .

The termsaM, bM, sa andsb are the magnitudes and the
signs of the results of the subtractions in Steps 6 and 7.
Clearly,aM andbM aren/2 digits asaL, bL, aH andbH.
In Steps 8, 9 and 10, we multiply thesen/2-digit numbers
by recursive calls. Here we have

low = aLbL ,

high = aHbH ,

mid = |aL − aH||bH − bL| .

Finally, in Step 11, we find the productt = a · b using Eq.
(1). We substitutelow into aLbL, high into aHbH and
sasbmid into (aL − aH)(bH − bL). The last subsitution
is due to the fact that

sasbmid = (sa|aL − aH|)(sb|bH − bL|)
= (aL − aH)(bH − bL) .

4 Efficient Implementation of KOA

In the previous section, we presented a naive implemen-
tation of KOA in order to illustrate the algorithm. Here, we
present an efficient implementation of KOA which is more
suitable for computer arithmetic.

function:KOA(a,b : n-digit number;n : integer)
t : 2n-digit number
aL,aM,aH : (n/2)-digit number
mid : n-digit number
/*** When the input size is one digit ***/
Step 1: ifn = 1 then returnt := a · b
/*** Generate 3 pairs of half-sized numbers ***/
Step 2: aL := an/2[0]
Step 3: bL := bn/2[0]
Step 4: aH := an/2[n/2]
Step 5: bH := bn/2[n/2]
Step 6: (sa,aM) := aL − aH

Step 7: (sb,bM) := bH − bL

/*** Multiply the half-sized numbers ***/
Step 8: tn[0] := KOA (aL,bL, n/2)
Step 9: tn[n] := KOA (aH,bH, n/2)
Step 10: mid := KOA (aM,bM, n/2)
/*** Combine the subproducts ***/
Step 11a: ifsa = sb then

(c,mid) := tn[0] + tn[n] + mid
else

(c,mid) := tn[0] + tn[n] −mid
Step 11b: (c′, tn[n/2]) := tn[n/2] + mid
Step 11c: tn/2[3n/2] := tn/2[3n/2] + c′ + c
Step 12: returnt

This new implementation first differs from the previous
one in Steps 8 and 9. The productaLbL andaHbH are
respectively stored into the lower and the higher halves of
t, i.e., tn[0] andtn[n], instead of usingthe variableslow
andhigh. It is clear that Steps 8 and 9 give

t = low + highzn = aLbL + aHbHzn .

The result above is a part of the computation performed
in Step 11. Thus, with the help of Steps 8 and 9, we
save some storage space in Step 11, since we do not use
the variableslow andhigh. Step 11 is accomplished in

three substeps. We computeaLbH + aHbL = aLbL +
aHbH + sasb|aL − aH||bL − bH| in Step 11a. We store
the result inton-digit variablemid and 1-bit carry into
c. For this computation, we addtn[0] and tn[n] con-
taining aLbL and aHbH. Also, if sa = sb, we add
mid = |aL − aH||bL − bH| to the sum, if not, we sub-
tract it from the sum. This is because ifsa = sb, we have
sasb = 1, otherwise,sasb = −1. In Step 11b and 11c, we
perform the computationt = t + (c,mid)zn/2. Because
t = aLbL + aHbHzn and(c,mid) = aLbL + aHbH +
sasb|aL − aH||bL − bH|, the computations in Steps 11a,
11b, and 11c are equivalent to Step 11 of KOA implemen-
tation in§ 3.

5 Complexity of KOA

KOA function contains several multi-digit additions and
subtractions. The operands of these operations need to be
read from the memory and their results need to be written
back to the memory. We take the memory read and write
operations into account in addition to the arithmetic opera-
tions. Ann-digit addition or subtraction requires2n-digit
memory read andn-digit memory write operations. Table 1
gives the number of arithmetic and read/write operations in
KOA function.

Steps Operation Read Write

6, 7 n 2n n

8, 9, 10 recursions

11a 2n 4n 2n

11b n 2n n

Total 4n 8n 4n

Table 1. The complexity of KOA with n > 1.

We do not perform any computations in Steps 2 through
5, becauseaL, aH, bL andbH are just the copies of the
lower and higher halves of the inputs. In practice, we can
avoid the copy operations by using pointers for the lower
and higher halves of the inputs.

Also, we view Step 11c as a single digit addition and
neglect its cost. This is because we assume that the addition
of a multi-digit number with a carry only affects the least
significant digit of the number and does not cause a carry
propagation through the higher order digits. We can justify
this assumption in software implementations where a digit
is usually stored into a 32-bit word, i.e., the basez = 232.
Adding a carry to a digit produces another carry with1/z =
2−32 probability.

Let T (n) denote the complexity ofKOA function. It

can be given as

T (n) = 3T (n/2) + 4n + 8n + 4n

= 3T (n/2) + 16n . (2)

The solution if this recurrence is the asympotic complexity
T (n) = O(n1.58), see, for example, [1].

We are also interested in computing the total number of
recursive calls made in KOA. LetR(n) denote the number
of recursive calls with input sizen = 2k, wherek is an
integer. The initial call makes 3 recursive calls withn/2-
digit inputs. These 3 recursive calls each leads toR(n/2)
recursions. Thus, we have the recursion

R(n) = 3 + 3R(n/2) . (3)

Taking R(1) = 1, we find the solution of this recursion
easily as

R(n) = 3 + 9 + ... + 3k + 3k = 3(3k − 1)/2 .

6 New Algorithm KOA 2k

In this section, we present a new algorithm derived from
KOA to multiply numbers of size a power of two in digits.
We name this algorithm as KOA2k due to the restriction
in its input size. Leta andb be the input operands to be
multiplied.

Let a andb be twon-digit numbers, andk be a positive
integer such that2k dividesn. We define

sumPk =
2k−1∑
i=0

Pk,iz
i(n/2k) ,

wherePk,i = am[im]bm[im] andm = n/2k. It is clear
that if 2k dividesn, then

sumPk, sumPk−1, · · · , sumP1, sumP0

are all defined. The last termsumP0 is the most important
one, since

sumP0 =
20−1∑
i=0

P0,iz
i(n/20) = P0,0 = a · b .

The goal of KOA2k is to findsumP0 which is equal to the
producta · b. The outline of KOA2k is given below.

• Restrict the operand sizen to a power of 2. The recur-
sion depth islog2 n. Furthermore,sumPk is defined
for all recursion levelsk from 0 tolog2 n.

• ComputesumPlog2 n in terms of the operands. We
show how to accomplish this step in Proposition 1.

• ComputesumPk−1 from sumPk iteratively to ob-
tain sumP0, which is the final result. We give the
iteration relation in Proposition 2

• During the computations, the termsumPk needs to
be stored. The size of this multi-digit number is given
in Proposition 3.

We now give 3 propositions whose proofs are given in [3].

Proposition 1 Let a andb be twon-digit numbers where
n = 2k0 for some integerk0. We have

sumPlog2 n = sumPk0 =
n−1∑
i=0

a[i] · b[i]zi .

2

Proposition 2 Let a andb be twon-digit numbers such
that 2k dividesn for some integerk ≥ 0. Then, the term
sumPk−1 is related tosumPk in the following way:

sumPk−1 = (1 + zm)sumPk +
2k−1−1∑

i=0

sa(i)sb(i)mid(i)z(2i+1)m ,

wherem = n/2k and

mid(i) = |am[2im] − am[(2i + 1)m]|
|bm[(2i + 1)m] − bm[2im]| ,

sa(i) = sign(am[2im] − am[(2i + 1)m]) ,

sb(i) = sign(bm[(2i + 1)m] − bm[2im]) .

2

Proposition 3 Let a andb be twon-digit numbers such
that 2k dividesn for some integerk ≥ 0. Then, the term
sumPk is of n + m words wherem = n/2k. 2

The discussion suggests a new algorithm in which the in-
put sizen must be a power of two. The algorithm computes
t = sumPk iteratively, untilt = sumP0 is obtained.

function: KOA2k(a,b : n-digit number;n : integer)
t : 2n-digit number
m : integer
aM : m-digit number /*** max(m) = n/2 ***/
mid : 2m-digit number
/*** When the input size is one digit ***/
Step 1: ifn = 1 then returna[0] · b[0]
/*** Compute sumPlog2 n ***/
Step 2: t :=

∑n−1
i=0 a[i] ∗ b[i]zi

/*** Compute sumPk−1 ***/
for k = log2 n downto1

m = n/2k

Step 3: t := t(1 + zm)
for i = 0 to 2k−1 − 1

Step 4: (sa,aM) := am[2im] − am[(2i + 1)m]
Step 5: (sb,bM) := bm[(2i + 1)m] − bm[2im]
Step 6: mid := KOA2k (aM,bM,m)
Step 7: t := t + sasbmidz(2i+1)m

endfor
endfor

Step 8: returnt

7 Efficient Implementation of KOA 2k

In the previous section, we presented a naive implemen-
tation of KOA2k in order to illustrate its properties. In this
section, we present an efficient implementation which is
more suitable for computer arithmetic. The algorithm com-
putessumPk and stores it into the digits oft from t[α] to
t[2n− 1] such thatt[α + i] = sumPk[i]. SincesumPk is
of n+m digits, we haveα = 2n−(n+m) = n−m. When
k = 0, we havesumPk = sumP0, m = n/2k = n and
α = n − m = 0. The algorithm computessumP0 = a · b
and stores it to the digits fromt[0] to t[2n − 1].

function:KOA2k(a,b : n-digit number;n : integer)
t : 2n-digit number
α, m : integer
aM : m-digit number /*** max(m) = n/2 ***/
mid : 2m-digit number
/*** When the input size is 1 digit ***/
Step 1: ifn = 1 then returna[0] · b[0]
/*** Compute sumPlog2 n ***/

α := n − 1
Step 2a: (C,S) := a[0] · b[0]
Step 2b: t[α] := S

for i = 1 to n − 1
Step 2c: (C,S) := a[i] · b[i] + C
Step 2d: t[α + i] := S

endfor
Step 2e: t[α + n] := C
/*** Compute sumPk−1 ***/

for k = log2 n downto1
m = n/2k α = n − m

Step 3a: tm[α − m] := tm[α]
Step 3b: (c, tn[α]) := tn[α] + tn[α + m]
Step 3c: tm[α + n] := tm[α + n] + c

for i = 0 to 2k−1 − 1
Step 4: (sa,aM) := am[2im] − am[(2i + 1)m]
Step 5: (sb,bM) := bm[(2i + 1)m] − bm[2im]
Step 6: mid := KOA2k (aM,bM,m)

if sa = sb then
Step 7a: (c, t2m[α + 2im]) := t2m[α + 2im]+

mid

Step 7b: propagate(t[α + 2im + 2m], c)
else

Step 7c: (b, t2m[α + 2im]) := t2m[α + 2im]−
mid

Step 7d: propagate(t[α + 2im + 2m], b)
endfor

endfor
Step 8: returnt

In Step 1, we multiply the inputs and return the result
if n = 1. Otherwise, we continue with the remaining
steps. The steps in this new implementation correspond to
the steps in the previous implementation, however, they are
divided into substeps. In Step 2, we compute

sumPlog2 n =
n−1∑
i=0

a[i] · b[i]zi .

The result is stored into the digits oft from t[α] to t[2n−1].
Sincek = log2 n, we havem = n/2k = 1 andα = n −
m = n−1. The producta[i]·b[i] for i = 0, · · · , n−1 yields
the two-digit result(C,S) such thatC andS are the most
and least significant digits, respectively. Sincea[i] · b[i] is
multiplied withzi, we addS to t[α+i] andC to t[α+i+1].

In Steps 3 to 7, we obtainsumPk−1 from sumPk.
These steps are in a loop running fromk = log2 n to k = 1.
Inside the loop, we havem = n/2k andα = n − m.

When Step 3 starts, the digits oft from t[α] to t[2n− 1]
representsumPk. In Step 3, we addsumPk to them-
digit shifted copy of itself to find(1 + zm)sumPk, and
then, store the result into the digitst[α − m] to t[2n − 1].

The magnitudes and the signs of the result of the subtrac-
tions in Steps 4 and 5 areaM, bM, signa, andsignb. Here
aM andbM arem-digit numbers. We multiply them by a
recursive call and obtain the2m-digit numbermid in Step
6.

When Step 7 starts, the digits oft from t[α − m] to
t[2n−1] represent the multi-digit number(1+zm)sumPk.
In Step 7, we addsasbmidz(2i+1)m to this number. Ifsa =
sb andsasb = 1, we addmidz(2i+1)m, following Steps 7a
and 7b. Otherwise ifsasb = −1, we subtractmidz(2i+1)m,
following Steps 7c and 7d. Sincemid is multiplied by
z(2i+1)m, the least significant digit oft involving the oper-
ations in Step 7 ist[α−m+(2i+1)m] = t[α+2im]. We
add (subtract)mid to (from) the consecutive2m digits oft
in Step 7a (7c), starting fromt[α + 2im]. Then, we prop-
agate the resulting carry (borrow) through the higher order
digits of t in Step 7b (7d), starting fromt[α + 2im + 2m].
The function propagate(t[k], c) is given as follows:

while(c > 0)
(c, t[k]) := t[k] + c
k := k + 1

The function propagate(t[k], c) adds (subtracts) a carry
(borrow) to (from) thekth digit of t and propagates it
through the higher order digits.

8 Complexity of KOA2k

A detailed (step by step) complexity analysis of KOA2k

function is performed in [3], and the results are summarized
in Table 2 below. We neglect the cost of addition with a
single carry and subtraction with a single borrow. Thus,
Steps 3c, 7b and 7d do not take place in Table 2.

Steps Operation Read Write

nT (1)

2(n − 1) n − 1

3a n − 1 n − 1

3b n log2 n 2n log2 n n log2 n

4 n
2 log2 n n log2 n n

2 log2 n

5 n
2 log2 n n log2 n n

2 log2 n

6 recursions

7a,7c n log2 n 2n log2 n n log2 n

Total nT (1) + 12n log2 n + 5n − 5

Table 2. The complexity of KOA2 k with n > 1.

The single digit multiplications in Step 2,a[i] · b[i] for
i = 0, · · · , n − 1, costnT (1) whereT (1) denotes the cost
of multiplying two digits, including the cost of reading the
operands and writing the result. Also, a single digit read
and a 2-digit addition are performed in Step 2c in order to
readC and add it toa[i] ·b[i] in a loop iteratingn−1 times.
Thus, we have2(n − 1) additions andn − 1 reads in Step
2c.

We havem = n/2k assignments in a loop iterating
from k = log2 n to 1 in Step 3a. This makes a total of∑log2 n

k=1 (n/2k) = n − 1 assignments. We also add then-
digit numbers in the same loop in Step 3b, which costs a
total ofn log2 n additions.

Steps 4 to 7 are in two loops. The outer loop iterates
log2 n times while the inner loop iterates2k−1 times. Steps
4 and 5 perform operations onm-digit numbers. Thus,
m2k−1 log2 n = (n/2) log2 n operations are needed to per-
form in Steps 4 and 5 each. Step 7 performs operations
on 2m-digit numbers. Thus, we perform2m2k−1 log2 n =
n log2 n operations in Step 7.

Step 6 makes a recursive call withm-digit input and is
embedded in two loops: The inner loop iterates2k−1 times,
while the outer loop iterates fromk = log2 n to 1. There-
fore, the the complexity ofKOA2k function, denoted as

T (n), can be given as

T (n) =
log2 n∑
k=1

2k−1T (n/2k) + Total(n) ,

whereTotal(n) is the number operations, reads and writes
given in the last row of Table 2, which is equal to

Total(n) = nT (1) + 12n log2 n + 5n − 5 .

As shown in [3], the above recursion can be simplified as

T (n) = 3T (n/2) + 12n + 5 . (4)

This recurrence is similar to the recurrence in Eq. (2). The
asympotic complexity of KOA2k is alsoO(n1.58) as KOA.
However, since12n + 5 < 16n for n > 2, the running time
of KOA2k is better than KOA, i.e., the constant in front of
the order is smaller.

Similarly, we compute the number of recursive calls
made by KOA2k. It makes2k−1 recursive calls withm-
digit inputs in a loop iterating fromk = log2 n to 1 in Step
6. Thus, we have the following recurrence:

R(n) =
log2 n∑
k=1

2k−1 +
log2 n∑
k=1

2k−1R(n/2k)

= n − 1 +
log2 n∑
k=1

2k−1R(n/2k) ,

wheren ≥ 1 andR(1) = 0. It turns out that this recursion
can also be simplified as

R(n) = 1 + 3R(n/2) , (5)

as shown in [3]. The solution of this recurrence is given as

R(n) = (3k − 1)/2 .

In § 5, we found the total number of recursive calls in KOA
function asR(n) = 3(3k − 1)/2. We conclude that KOA2k

makes one third as many recursive calls as KOA, as we have
claimed.

9 A Multiplication Example by KOA 2k

We will multiply the hexadecimal numbersa = F3D1
andb = 6CA3 using KOA2k. The operand size and the
base is given asn = 4 andz = 16. Let a[i] andb[i] denote
theith digits ofa andb, respectively.

Step 1: Sincen > 1, we continue with the remaining steps.

Step 2: We need to compute

t := sumPlog2 n =
n−1∑
i=0

a[i]b[i]zi .

The individual multiplications are

a[0] · b[0] = 1 · 3 = 03 a[1] · b[1] = D · A = 82
a[2] · b[2] = 3 · C = 24 a[3] · b[3] = F · 6 = 5A

Since multiplication byz means 1-digit shift, the sum
sumP2 is computed as

0 3
8 2

2 4
+ 5 A
t = sumP2 = 5 C C 2 3

Iteration: We havek = log2 n down to1 andm = n/2k.

Step 3 (1st Iteration): The computation oft := t(1+zm)
for m = 1 is accomplished as

5 C C 2 3
+ 5 C C 2 3
t = 6 2 8 E 5 3

Steps 4, 5 and 6 (1st Iteration):We need to compute the
termssa(i)sb(i)mid(i), wherei = 0, · · · , 2k−1 − 1
for k = 2 as

sa(0)sb(0)mid(0) = (a[0] − a[1])(b[1] − b[0])
= (1 − D)(A − 3)
= −54 ,

sa(1)sb(1)mid(1) = (a[0] − a[1])(b[1] − b[0])
= (3 − F)(6 − C)
= 48 .

Step 7 (1st Iteration): We compute

t := t + sasbmidz(2i+1)m ,

wherei = 0, · · · , 2k−1 − 1 for k = 2 andm = 1 as
follows

6 2 8 E 5 3
− 5 4
+ 4 8
t = sumP1 = 6 7 0 9 1 3

Step 3 (2nd Iteration): We computet := t(1 + zm) for
m = 1 as

6 7 0 9 1 3
+ 6 7 0 9 1 3
t = 6 7 7 0 1 C 1 3

Steps 4, 5, and 6 (2nd Iteration):We compute the terms
sa(i)sb(i)mid(i) for i = 0, · · · , 2k−1 − 1 andk = 1.
Sincek = 1, we have only one term fori = 0, which
is sa(0)sb(0)mid(0), and computed as

= (a2[0] − a2[2])(b2[2] − b2[0])
= (D1 − F3)(6C − C3)
= 74E .

Step 7 (2nd Iteration): We compute

t := t + sasbmidz(2i+1)m ,

wherei = 0, · · · , 2k−1 − 1 for k = 1 andm = 2 as
follows

6 7 7 0 1 C 1 3
+ 7 4 E
t = sumP0 = 6 7 7 7 6 A 1 3

We obtain the result at the end of Step 7 ast = 67776A13
which is the productt = sumP0 = a ·b = F3D1 ·6CA3.

10 Implementation Results

In order to compare their practical implementations,
we have written assembly language programs for KOA
and KOA2k and obtained timings on a 350-MHz Pen-
tium PC running Windows 2000 operating system with 256
megabytes of memory. The timing results (in milliseconds)
are summarized in Table 3.

Operand Threshold KOA KOA2k Speedup

(bits) (words) (ms) (ms) %

1024 16 0.0278 0.0272 2.2

1536 12 0.0575 0.0548 4.7

2048 16 0.0895 0.0854 4.6

3072 12 0.1809 0.1702 5.9

4096 16 0.2788 0.2656 4.7

8192 16 0.8638 0.8142 5.7

Table 3. Timings of KOA and KOA 2k.

During the multiplication of two large operands us-
ing KOA or KOA2k, recursive calls are made to multiply
smaller operands. When the operand size becomes equal to
or less than a particular threshold, no more recursive calls
are made. Instead, the operands are multiplied using the
classical multiplication method. This is because neither
KOA nor KOA2k can outperform the standard multiplica-
tion method with small operands. We experimentally ob-
tained the optimum threshold our in platform as 12 or 16

computer words. Table 3 also lists the threshold values in
words in the second column.

The third column of Table 3 lists the speedup in percent-
age of KOA2k with respect to KOA. We have obtained ap-
proximately 5% speedup when the operands are larger than
1024 bits. Note that the speedup for 1536-bit operands is
more than the speedup for 2048-bit operands. Similarly, the
speedup for 3072-bit operands is more than the speedup for
4096-bit operands. This shows that KOA2k performs better
than KOA for small threshold values.

References

[1] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction
to Algorithms. MIT Press, 1990.

[2] W. Diffie and M. E. Hellman. New directions in cryptogra-
phy. IEEE Transactions on Information Theory, 22:644–654,
November 1976.

[3] S. S. Erdem.Improving the Karatsuba-Ofman Multiplication
Algorithm for Special Applications. PhD thesis, Department
of Electrical and Computer Engineering, Oregon State Uni-
versity, November 2001.

[4] IEEE. P1363: Standard specifications for public-key cryp-
tography. Draft Version 13, November 12, 1999.

[5] A. Karatsuba and Y. Ofman. Multiplication of multidigit
numbers by automata.Soviet Physics-Doklady, 7:595–596,
1963.

[6] D. E. Knuth. The Art of Computer Programming, Volume 2,
Seminumerical Algorithms. Addison-Wesley, Third edition,
1998.

[7] Ç. K. Koç. High-Speed RSA Implementation. Technical Re-
port TR 201, RSA Laboratories, 73 pages, November 1994.

[8] A. Menezes, P. Van Oorschot, and S. Vanstone.Handbook
of Applied Cryptography. CRC Press, 1997.

[9] National Institute for Standards and Technology. Digital Sig-
nature Standard (DSS). FIPS PUB 186-2, January 2000.

[10] R. L. Rivest, A. Shamir, and L. Adleman. A method
for obtaining digital signatures and public-key cryptosys-
tems. Communications of the ACM, 21(2):120–126, Febru-
ary 1978.

