Architectures for Unified Field Inversion with Applications in
Elliptic Curve Cryptography

E. Savas and ¢. K. Kog

Department of Electrical & Computer Engineering
Oregon State University
Corvallis, Oregon 97331
{savas,koc}@ece.orst.edu

ABSTRACT

We present two new inversion algorithms for bi-
nary extension and prime fields, which are slightly
modified versions of the Montgomery inverse al-
gorithm. An hardware architecture implement-
ing these algorithms is also introduced. In our
proposed architecture, the field elements are rep-
resented using a multi-word format which allows
a scalable and unified architecture to operate in
a broad range of precision. This hardware archi-
tecture can be used to obtain efficient implemen-
tations of elliptic curve cryptography primitives.

1. INTRODUCTION

The basic arithmetic operations (i.e. addition,
multiplication, and inversion) in prime and bi-
nary extension fields, GF'(p) and GF(2"), have
several applications in cryptography, such as de-
cipherment operation of RSA algorithm [1], Diffie-
Hellman key exchange algorithm [2], the Govern-
ment Digital Signature Standard [3] and also el-
liptic curve cryptography [4, 5]. Recently, speed-
ing up inversion operation in both fields has been
gaining some attention since inversion is the most
time consuming operation in elliptic curve cryp-
tographic algorithms when affine coordinates are
selected [6, 7, 8, 9, 10].

In this paper, we will give and analyze mul-
tiplicative inversion algorithms for GF(p) and
GF(2") which allow very fast and area-efficient,
unified and scalable hardware implementations.
The algorithms are based on the Montgomery in-
verse algorithms given in [6].

2. THE MONTGOMERY INVERSION
ALGORITHM

The following algorithm performs the Montgomery
inversion in GF(2"). However, the Phase II of

the algorithm is omitted since it is not relevant

to this paper, and a similar algorithm is in [9)].
Algorithm A

Input: a(z) and p(x), where deg(a(z)) < deg(p(x))
Output: r(z) and k, where r = a(z) " 'z* (mod p(z))
and deg(a(x)) < k < deg(p(x)) + deg(a(x)) +

u(z) :==p(z), v(z) :=a(x), r(z) := 0, and s(x) =1
k:=0
while (v(z)! = 0)
if u(0) = 0 then u(z) := u(x)/x, s(z) := zs(x)
else if v(0) = 0 then v(z) = v(z)/z, r(x) := ar(z)
else if deg(u(x)) > deg(v(x)) then
ulw) = (u(z) + o(z))/z
r(z) :=r(z) + s(x)
s(x) == xs(x)
7. else v(z) = (v(z) + u(x))/x
s(z) = s(z) +r(z)
r(x) = wr(z)
8 k:=k+1
9: if deg(r(z)) = deg(p(x)) then r(z) := r(z) 4+ p(x)
10: return r(z) and k

The following properties are observed:

o If deg(p(z)) > deg(a(z)) > 0, then the de-
grees of intermediate binary polynomials r(x),
s(z), u(x), and v(z) in the Montgomery inverse
algorithm are always in the range [0, deg(p(z))].

e If p(x) is an irreducible polynomial, and deg(p(z)) >
deg(a(z)) > 0, then n+1 < k < deg(a(z))+n+1.

o If p(x) is an irreducible polynomial, and deg(p(z)) >
deg(a(x)) > 0, then Phase I of Montgomery in-

verse algorithm for GF(2") returns a(x)'a*

(mod p(x)).

Additions and subtractions in the original al-
gorithm are replaced with additions without carry
in GF(2") version of the algorithm. Since it is
possible to perform addition (and subtraction)
with carry and addition without carry in a single
arithmetic unit, this difference does not cause a
change in the control unit of a possible unified
hardware implementation. On the other hand,
the algorithm for GF(2") differentiates from the
original algorithm in Step 6, in which the degrees
of u(z) and v(z) are compared. In order to have
a unified architecture, we propose a slight modifi-
cation in the original algorithm for GF(p) which
is given in the following section.

3. A VARIATION OF MONTGOMERY
INVERSION ALGORITHM

We propose to modify Step 6 of the algorithm
given in [6] in a such way that instead of compar-
ing v and v, number of bits needed to represent
them are compared. The proposed modifications
can be seen in Step 6 and Step 7.a of the modified
algorithm given below:

Algorithm B

Input: a € [1,p— 1] and p

Output: r € [1,p — 1] and k, where r = a~
(mod p) and n < k < 2n

12k

1: w:=pv:i=a,r:=0,and s:=1
2: k=0
3: while (v > 0)
4: if v is even then u :=u/2, s := 2s
5: else if v is even then v :=v/2, r :=2r
6: else if bitsize(u) > bitsize(v) then
u:=(u—v)/2,r:=r+s,s:=2s
T else then
vi=(v—u)/2, s:=s+r, r:=2r
7.a: if v <0 thenv:=—v, s:=—s
8: k:=Fk+1
9: if r <0 then
9.a: ifr<-—-pthenr:=r+p
9.b: return r ;= —r
10: else

10.a: ifr>pthenr:=r—p
10.b: return r :=p —r and k

When corrections in Step 7.a are executed,
the effect is multiplying both sides of the invari-
ant by —1. Therefore, new invariant when s < 0
is given as —p = us + vr. While u and v remain
to be positive integers, s and r might be positive

or negative. Therefore, we need to alter the final
reduction steps to bring r in the correct range,
which is [0,p). The range of s and r are [—p, p|
and [—2p, 2p], respectively. As a result we need
to use one more bit to represent s and r than
in the original algorithm. The advantage of this
version of the algorithm will be discussed in the
next section.

4. HARDWARE ARCHITECTURE

Scalability of the arithmetic modules is impor-
tant in cryptographic context since it allows to
increase the key length when the need for more
security arises without having to modify or re-
design the cryptographic unit. The scalability of
the inverter unit can easily be achieved by using
shifter and adder units which handle only certain
number of bits of the operands at a time. One ad-
dition (or shift) operation, therefore, in the cor-
responding field takes more than one clock cycle.
The number of bits that the unit operate on is
referred as word and its length can be determined
or adjusted with respect to given area, speed or
latency requirements.

The algorithms B and C can be implemented
in a unified hardware architecture provided that
a dual-field adder/subtractor (DFA/S) that op-
erates in both fields is available. In order for the
inverter unit to be scalable, The DFA/S is de-
signed to handle words of finite number of bits
at a clock cycle, therefore we call them word
DFA/s(WDFA/S).

Except the final correctional steps (steps 9
through 11), the main loops of the Algorithm A
and Algorithm B can be implemented in the same
hardware unit. The only difference in the main
loops of the two algorithms is that the Algo-
rithm B has the extra Step 7.a. However, this
extra step neither necessitates a major change in
the circuitry nor introduces any extra clock cycle
in the computation. Algorithm B replaces integer
comparison operation of the original algorithm
with just one bitsize comparison. In exchange for
that, some of the intermediate variables take neg-
ative integer values. For example, the variables v
and s may have to change sign in Step 7.a if the
subtraction operation in Step 7 produce a neg-
ative result. Taking two’s complement of these
two variables may re-introduce the clock cycles
we saved by eliminating integer comparison op-

eration in Step 6 of the original algorithm [6]. On
the other hand, When variable v turns out to be
a negative number as a result of the subtraction
in Step 7, we may keep it as negative in two’s
complement representation. In the next itera-
tion in the loop, it can easily be seen that Step 5
or Step 6 is executed. Sign change of the vari-
able may be performed at the same time as the
subtraction operation in the subsequent Step 6.

On the other hand, the magnitudes of r and
s cannot easily be determined. Therefore, we
need to devise a method in order to avoid taking
two’s complement of s in Step 7.a. We propose
to maintain one extra bit for each of the vari-
ables s and r which holds extra sign information
for them. We call this extra sign bit as correct
sign (CS) of the variable. These variables can
be kept as negative (in two’s complement repre-
sentation) or positive, however, their real sign is
determined by the value in correct sign bit. If
their actual sign is different from the one in the
correct sign bit, the sign must be flipped. On the
other hand, taking two’s complement when this
happens is not desirable since we want to avoid
the extra clock cycles it introduces. The actual
and correct signs of a variable determine the way
we execute the addition operation = :=r + s in
Steps 6 and 7. Assuming that S, and CS, are
the actual and correct sign of the variable x re-
spectively, this operation is performed as in the
following;:

Algorithm C
Input: r, s, S,, Ss, CS,., and CS;
Output: z:=r+s, S;, and CS;

1. if S, =CS, and S; = CS, then

l.a: z:=s+rand CS; := 95,

2: elseif S, = CS, and S, = C'S, then
2.a: x:=r—sand CS, =95,

3: else if S, = C'S, and Ss = CS, then
3.a: xz:=s—rand CS, =S,

4: else S, = CS, and Sy, = C'Sy then
da: x:=s+rand CS,:= S5,

5. COMPLEXITY ANALYSIS OF THE
UNIFIED INVERTER

Assuming that we have two WDFA/S in our de-
sign, the total computation time of inversion in
terms of total clock cycle count can be computed
using the formula 7' = k- (e+1), where k is the it-
eration index in the main loop of the algorithms,

e = [%E17 is the number of words and w is the
word length.

Based on these experimental values we calcu-
lated the estimated execution time in terms of
number of clock cycles for inversion operation
using word length 32. We summarized the re-
sults in Table 1. Table 1 also includes the clock
cycle count estimates for the modular multipli-
cation operation for the same precisions, which
is assumed to be performed using unified and
scalar Montgomery modular multiplication unit
proposed in [11] with 7 pipeline stages and 32-bit
word size. The ratio of inversion time to multi-
plication time, which is important in the deci-
sion whether affine or projective coordinates are
to be employed in elliptic curve cryptography, is
also included in the table. It is argued in [12]
that for binary extension fields GF(2¥) projec-
tive coordinates, which does not entail fast execu-
tion of inversion operation, perform better than
the affine coordinates when inversion operation is
more than 7 times slower than the multiplication
operation. Similarly, our calculations show that
this ratio is about 9 for prime field GF(p). As
can be observed in Table 1 the ratio stays lower
than 7 for the precisions of interest to the elliptic
curve cryptography.

Table 1: Estimated clock cycles for inversion
and the ratio to the multiplication operation.

bitsize | Inversion | Multiplication | Ratio
160 1368 327 4.18
192 1911 398 5.00
224 2544 469 5.42
256 3276 526 6.23

In Figure 1 and Figure 2, hardware realiza-
tions of the operations (u — v)/2 and r + s are
shown, respectively. In Figure 1, the building
block A simply separates the least significant bit
from the rest of the result bits, which are to be
kept in the latch one clock cycle in order to per-
form shift operation. In the next clock these bits
are combined with the least significant bit of the
current result, which is placed in the most sig-
nificant position of the final resulting word, in
block B. The block C of the Figure 1, is used to
connect the register outputs to the correct in-
put of the adder/subtractor unit. The circuit
in Figure 2 performs two operations: r + s and
2r(or 2s). The register content, which is to be

shifted left by one bit, is available at the output
of block D. The block D is also used to connect

the

register outputs to the correct input of the

adder/subtractor unit. Blocks A and B are used
to shift a word in each clock cycle. Block C di-
rects the results of the two operation (r + s and
2r(or 2s)) to the appropriate registers.

Figure 1: Hardware realization of (u — v)/2.

1]

2]

Cin l

ADDER/
SUBTRACTOR

Local
Control

Figure 2: Hardware realization of r + s.

Gin [

ADDER/
SUBTRACTOR

Local
Control

6. REFERENCES

J.-J. Quisquater and C. Couvreur, “Fast
decipherment algorithm for RSA public-key
cryptosystem,” FElectronics Letters, vol. 18,
no. 21, pp. 905-907, Oct. 1982.

W. Diffie and M. E. Hellman, “New direc-
tions in cryptography,” IEEE Transactions
on Information Theory, vol. 22, pp. 644-654,
Nov. 1976.

National Institute for Standards and Tech-
nology, “Digital signature standard (DSS),”
Federal Register, vol. 56, pp. 169, Aug. 1991.

[4]

[12]

N. Koblitz, “Elliptic curve cryptosystems,”
Mathematics of Computation, vol. 48, no.
177, pp. 203-209, Jan. 1987.

A. J. Menezes, Elliptic Curve Public Key
Cryptosystems, Kluwer Academic Publish-
ers, Boston, MA, 1993.

B. S. Kaliski Jr., “The Montgomery inverse
and its applications,” IFEEE Transactions
on Computers, vol. 44, no. 8, pp. 1064-1065,
Aug. 1995.

R. Schroeppel, H. Orman, S. O’Malley, and
O. Spatscheck, “Fast key exchange with el-
liptic curve systems,” in Advances in Cryp-
tology — CRYPTO 95, D. Coppersmith, Ed-
itor, Lecture Notes in Computer Science,
No. 973, pp. 43-56, Springer, Berlin, Ger-
many, 1995.

T. Kobayashi and H. Morita, “Fast modular
inversion algorithm to match any operand
unit,” IEICE Transactions on Fundamen-
tals of Electronics, Communications and
Computer Sciences, vol. E82-A, no. 5, pp.
733740, May 1999.

E. Savag and C. K. Kog, “The Montgomery
modular inverse - revisited,” IFEE Trans-

actions on Computers, vol. 49, no. 7, pp.
763-766, July 2000.

M. A. Hasan, “Efficient computation of mul-
tiplicative inverses for cryptographic appli-
cations,” Technical Report CORR 2001-03,
Centre for Applied Cryptographic Research,
University of Waterloo, Canada, 2001.

E. Savag, A. F. Tenca, and C. K. Kog, “A
scalable and unified multiplier architecture
for finite fields GF(p) and GF(2™),” in
Cryptographic Hardware and Embedded Sys-
tems - CHES 2000, C. K. Ko¢ and C. Paar,
Editors, Lecture Notes in Computer Science
No. 1965, pp. 281-296, Springer, Berlin,
Germany, 2000.

J. Lépez and R. Dahab, “Fast multiplica-
tion on elliptic curves over GF(2") without
precomputation,” in Cryptographic Hard-
ware and FEmbedded Systems, C. K. Kog
and C. Paar, Editors, Lecture Notes in
Computer Science, No. 1717, pp. 316-325,
Springer, Berlin, Germany, 1999.

