
An High-Speed ECC-based Wireless Authentication Protocol
on an ARM Microprocessor ∗

M. Aydos, T. Yanık, and C¸ . K. Koç
Electrical & Computer Engineering

Oregon State University
Corvallis, Oregon 97331, USA

{aydos,yanik,koc}@ece.orst.edu

Abstract

In this paper, we present the results of our implemen-
tation of elliptic curve cryptography (ECC) over the field
GF (p) on an 80-MHz, 32-bit ARM microprocessor. We
have produced a practical software library which supports
variable length implementation of the elliptic curve digital
signature algorithm (ECDSA). We implemented the ECDSA
and a recently proposed ECC-based wireless authentica-
tion protocol using the library. Our timing results show
that the 160-bit ECDSA signature generation and verifica-
tion operations take around 46 ms and 94 ms, respectively.
With these timings, the execution of the ECC-based wire-
less authentication protocol takes around 140 ms on the
ARM7TDMI processor, which is a widely used, low-power
core processor for wireless applications.

1. Introduction

The rapid progress in wireless communication systems,
personal communication systems, and smartcard technolo-
gies has brought new opportunities and challenges to be met
by engineers and researchers working on the security as-
pects of the new communication technologies. Public-key
cryptography offers robust solutions to many of the existing
problems in communication systems, however, excessive
computational demands (on-line memory, code size, and
speed) have made the use of public key cryptography lim-
ited, particularly on wireless communication systems. The
implementation of public-key cryptography on server and
client platforms rarely brings problems due to the availabil-
ity of high-speed processors and extensive memory space.
However, in restricted hardware environments with limited

∗The 16th Annual Computer Security Applications Conference, pages
401-409, New Orleans, Louisiana, IEEE Computer Society Press, Los
Alamitos, California, December 11-15, 2000.

computational power and small memory, e.g., smartcards
and cellular phones, we meet more challenges. The inte-
gration of the public-key cryptographic techniques is often
delayed or completely ruled out due to the difficulty of ob-
taining efficient, reliable solutions. It is obvious that we
need

• Public-key cryptographic systems with higher strength
per key bit.

• Efficient, platform specific, and optimized implemen-
tations for a given restricted environment.

The benefits of the ‘higher strength per key bit’ include
higher speeds, lower power consumption, smaller band-
width requirements, and smaller certificate sizes. These
advantages are particularly beneficial in applications where
the bandwidth, computational strength, power availability,
or storage are highly constrained.

Elliptic curve cryptography [18, 14, 4] offers secure and
efficient solutions for the new communication technologies.
It requires fewer bits than the RSA for similar amount of se-
curity. For example, recently, it was claimed [17] that 1024-
bit RSA and 139-bit ECC offer computationally equivalent
security. This is better than the generally believed security
comparison in which 1024-bit RSA and 160-bit ECC offer
similar security. While the ECC provides shorter key sizes,
the time and code size requirements may still be excessive.
Thus, efficient and optimized implementations are required
for the restricted platforms particularly found in wireless
communication.

Certicom’s SigGen smartcard [5] is an example ECC
software implementation on a restricted platform. It is a
prototype smartcard with an 8-bit microprocessor that gen-
erates digital signatures using a conventional core from Mo-
torola (68SC28). Developed in cooperation with Schlum-
berger, SigGen combines the Multiflex card technology
with the Certicom Elliptic Curve Engine based on the field
GF (2k), and provides fast public-key operations. This



card demonstrates that effective digital signature applica-
tions can be implemented on standard processors. The digi-
tal signatures are generated in less than 600 ms while using
only 90 bytes of RAM. It has been implemented in less than
4K code. SigGen is ideally suited for applications requiring
end-user identification and strong authentication.

Another interesting implementation of the ECC over the
field GF (p) on a 16-bit microcomputer was introduced in
[9]. They have designed a practical cryptographic library,
which supports the elliptic curve arithmetic operations, the
digital signature generation and verification, and the Secure
Hash Algorithm SHA-1. Their target processor was Mit-
subishi’s 10-MHz, 16-bit microcomputer M16C, which has
been used in various applications in mobile telecommuni-
cation systems, e.g., cellular phones, pagers, etc. They de-
signed two independent integer arithmetic modules: one for
executing the modular arithmetic operations with respect to
a fixedprime p and the other for general integer routines
which accept any positive integers with arbitrary length for
wider applicability. Their goal was here to support not only
the ECC but also the RSA. They have reported a speed of
150 ms for generating a 160-bit ECDSA signature and 630
ms for verifying the signature. Total code size was 4 kilo-
bytes, including the SHA-1. There are much faster imple-
mentations of the ECC [12], however, these implementa-
tions are obtained on high-end microprocessors.

Our goal has been to design a high-speed and scalable
cryptographic library suitable for implementation on low-
power microprocessors and digital signal processors. The
library supports the ECDSA signature generation and veri-
fication and also contains SHA and DES algorithms, which
are necessary for the implementation of the wireless au-
thentication protocols. In this paper, we report the imple-
mentation results of the wireless authentication protocol de-
scribed in [1]. We implemented the protocol on the 80-
MHz, 32-bit ARM7TDMI microprocessor using the ARM
software development toolkit. The ARM7TDMI is a com-
monly used low-power processor for wireless communica-
tion platforms, for example, see the references [7, 8] and the
web locations:

http://www.dspg.com/prodtech/core/article/18.htm
http://www.lucent.com/micro/NEWS/PRESS1999/022399c.html
http://www.mobilinktel.com/Press/
http://www.oki.co.jp/OKI/DBG/english/arm7tdmi.htm
http://www.sirius.be/satcom_integr.htm

In our implementation, we obtained the timings of 46.4
ms ECDSA signature generation and 92.4 ms ECDSA
signature verification for the 160-bit ECC over the field
GF (p). We also obtained the total protocol execution tim-
ings, memory and bandwith requirements, which are given
in this paper. We first summarize methods to perform ef-
ficient elliptic curve arithmetic in§2. We then give a brief

description of the ECDSA algorithm in§3 and the recently
proposed wireless authentication protocol in§4. The ECC-
based wireless authentication protocol is compared to the
other existing protocols in§5. We briefly describe the ARM
microprocessor and its development environment in§6. A
brief description of the software architecture of our ECC
implementation is given in§7. Finally, the timing results of
our implementation are given in§8 and the conclusions of
the study are given in§9.

2. Elliptic Curve Operations

The speed of the elliptic curve operations, e.g., the point
addition and point multiplication, depends on the arithmetic
of the underlying finite field. The drafted IEEE standard
[10] proposes the use of the fieldsGF (p) andGF (2k). The
use of the fieldGF (p) requires that we implement modular
arithmetic with respect to the prime modulusp. Due tothe
security requirements, the size ofp is at least 100 bits, usu-
ally around 160 bits. The large number arithmetic has been
extensively studied in the context of the RSA algorithm, and
efficient algorithms for field multiplication have been de-
signed [15]. An efficient method for performing the field
multiplication is the Montgomery method [19, 16], which
effectively performs modulo2k multiplication instead of
modulop multiplication, where2k > p > 2k−1.

In the following we summarize several different coordi-
nate systems used to represent elliptic curve points. This
is important because for each system the total number of
field multiplications is different resulting in different speed
values for elliptic curve point additions and doublings. The
number of expensive field operations (multiplication, squar-
ing, and inversion) required by the elliptic curve point ad-
dition and doubling operations are summarized in Figure 1
for the considered coordinate systems.

Figure 1: The field operations for coordinate systems.

EC Op. Affine Project. Modif. Jacobi
Add 1 Inv + 3 Mul 16 Mul 13 Mul + 6 Squ
Double 1 Inv + 4 Mul 10 Mul 4 Mul + 4 Squ

2.1. Arithmetic Using Affine Coordinates

An elliptic curve over the finite fieldGF (p) is defined as
the set of points(x, y), satisfying the elliptic curve equation

y2 = x3 + ax + b ,

wherex, y, a andb are the elements of the field. Note that
the condition4a3 + 27b2 �= 0 should be met. The addition



formulae in theaffine coordinatesare given below. LetP =
(x1, y1), Q = (x2, y2), andK = P + Q = (x3, y3) be
points on the elliptic curveE over the finite field GF (p).
The formulae for obtainingK are given below.

• Addition formulae when P �= ±Q

U1 = y1 − y2

U2 = x1 − x2

U3 = U1U
−1
2

x3 = U2
3 − x1 − x2

y3 = U3(x1 − x3) − x1

• Doubling formulae whenP = Q

U1 = 3x2
1 + a

U2 = 2y1

U3 = U1U
−1
2

x3 = U2
3 − 2x1

y3 = U3(x1 − x3) − y1

2.2. Arithmetic Using Projective Coordinates

The inversion operation within the fieldGF (p) is a time
consuming operation. Theprojective coordinatesare used
to reduce the number of modular inversions [9]. Given the
affine coordinatesx andy, theprojective coordinatesX, Y ,
andZ are obtained as

X = x , Y = y , Z = 1 .

Actually, there are more than one kind of projective coordi-
nates, however, the one mentioned here provides the fastest
arithmetic [10]. The equations given above are used for
converting a point from the affine coordinates to the pro-
jective coordinates. The formulae for converting it back to
the affine coordinates are given as

x = XZ−2 and y = Y Z−3 .

The addition formulae in the projective coordinates are
given in [9, 10]. LetP = (X1, Y1, Z1), Q = (X2, Y2, Z2),
andK = P + Q = (X3, Y3, Z3) be points on the elliptic
curveE over the fieldGF (p). The formulae for obtaining
K are given below.

• Addition formulae when P �= ±Q

U1 = X1Z
2
2

S1 = Y1Z
3
2

U2 = X2Z
2
1

S2 = Y2Z
3
1

W = U1 − U2

R = S1 − S2

T = U1 + U2

M = S1 + S2

Z3 = Z1Z2W

X3 = R2 − TW 2

V = TW 2 − 2X3

Y3 = 2−1(V R − MW 3)

• Doubling formulae whenP = Q

M = 3X2
1 + aZ4

1

Z3 = 2Y1Z1

S = 4X1Y
2
1

X3 = M2 − 2S

T = 8Y 4
1

Y3 = M(S − X3) − T

2.3. Arithmetic Using Modified Jacobian Coordi-
nates

TheJacobian coordinatesof the affine coordinates(x, y)
are defined as(X, Y, Z) such thatx = XZ−2 and y =
Y Z−3. The new elliptic curve equation then takes the form

Y 2 = X3 + aXZ4 + bZ6

over the fieldGF (p). When the Jacobian coordinates are
represented as a quadruple(X, Y, Z, aZ4), we obtain the
modified Jacobian coordinateswhich seem to provide the
fastest possible doubling formulae. The addition formulae
for the Jacobian and the modified Jacobian coordinates are
given in [6]. Here, we only give the equations for the latter
one since it is the one that we decided to use in our soft-
ware implementation. LetP = (X1, Y1, Z1, aZ4

1 ), Q =
(X2, Y2, Z2, aZ4

2 ), andK = P + Q = (X3, Y3, Z3, aZ4
3 )

be points on elliptic curveE over the field GF (p). The
formulae for obtainingK are given below.

• Addition formulae when P �= ±Q

U1 = X1Z
2
2

S1 = Y1Z
3
2

U2 = X2Z
2
1

S2 = Y2Z
3
1

H = U1 − U2

r = S1 − S2

X3 = −H3 − 2U1H
2 + r2

Y3 = −S1H
3 + r(U1H

2 − X3)
Z3 = Z1Z2H

aZ4
3 = aZ4

1



• Doubling formulae whenP = Q

S = 4X1Y
2
1

U = 8Y 4
1

M = 3X2
1 + (aZ4

1 )
T = −2S + M2

X3 = T

Y3 = M(S − T ) − U

Z3 = 2Y1Z1

aZ4
3 = 2U(aZ4

1 )

3. Elliptic Curve Digital Signature Algorithm

The operations in the elliptic curve analogue of the Dig-
ital Signature Algorithm utilize the arithmetic of points
which are elements of the set of solutions of an elliptic curve
equation defined over a finite field. The security of the pro-
tocol depends on the intractability of the elliptic curve ana-
logue of the discrete logarithm problem. First, an elliptic
curveE defined overGF (p) with large group of ordern
and a pointP of large order is selected and made public
to all users. Then, the following key generation primitive is
used by each party to generate the individual public and pri-
vate key pairs. Furthermore, for each transaction the signa-
ture and verification primitives are used. We briefly outline
the Elliptic Curve Digital Signature Algorithm (ECDSA)
below, details of which can be found in [10].

ECDSA Key Generation The userA follows these steps:

1. Select a random integerd ∈ [2, n − 2].

2. ComputeQ = d × P .

3. The public and private keys of the userA are
(E, P, n, Q) andd, respectively.

ECDSA Signature Generation The userA signs the mes-
sagem using the following steps.

1. Select a random integerk ∈ [2, n − 2].

2. Computek × P = (x1, y1) andr = x1 mod n.

If x1 ∈ GF (2k), it is assumed thatx1 is repre-
sented as a binary number.

If r = 0 then go to Step 1.

3. Computek−1 mod n.

4. Computes = k−1(H(m) + d · r) mod n.

HereH is the secure hash algorithm SHA.

If s = 0 go to Step 1.

5. The signature for the messagem is the pair of
integers(r, s).

ECDSA Signature Verification The userB verifies A’s
signature(r, s) on the messagem by applying the fol-
lowing steps:

1. Computec = s−1 mod n andH(m).

2. Computeu1 = H(m) · c mod n andu2 = r ·
c mod n.

3. Computeu1 × P + u2 × Q = (x0, y0) andv =
x0 mod n.

4. Accept the signature ifv = r.

4. An ECC-based Wireless Authentication Pro-
tocol

The authentication protocol given in [1] was originally
intended for mobile phones. However, it is also suitable for
handheld devices and smartcards. This makes the protocol
a very strong security algorithm candidate to be deployed
in the next generation cellular phones and smartcards. The
160-bit key length is considered secure enough for now and
immediate future. However, the algorithms were imple-
mented in a way that the key length can easily be increased
to any integer multiple of 16 between 176 and 256. This
scalability makes our implementation unique. Below, we
briefly describe the protocol, details of which are found in
[1].

4.1. Terminal and Server Initializations

In order to receive a certificate, the terminal sends its
public keyQs together with its user identity through a se-
cure and authenticated channel to the CA. The CA uses its
private key to sign the hashed value of the concatenation
of the public key, the temporary identityIs, and the certi-
fication expiration datets. The CA then sends the signed
message through the secure and authenticated channel to
the terminal as shown in Figure 2.

By repeating the very same process the user acquires its
certificate as shown in Figure 3. The certificate consists
of a pair of integers which is denoted as(rs, ss) for the
server and(ru, su) for the user. Hereru andrs are thex
coordinates of the (distinct) elliptic curve pointsRu andRs,
respectively. As mentioned earlier, the proposed protocol is
based on the ECDSA.

4.2. Mutual Authentication Between Terminal and
Server

The protocols in Figures 2 and 3 are executed off-line.
The mutual authentication and key agreement protocols be-
tween the terminal (user) and the server need to be executed
in real-time. We give the combined protocol in Figure 4.



Figure 2: Network Server Initialization.
SERVER CERTIFICATION AUTHORITY

• Chooseds ∈ [2, n − 2] • Chooseks ∈ [2, n − 2]
• Qs = ds × P • Rs = ks × P

• Send
Qs−→ • Receive

• Choose uniqueIs

• rs = Rs.x
• ss = k−1

s (H(Qs.x, Is, ts) + dca · rs)

• Receive
Qca, Is, (rs, ss), ts←− • Send

• es = H(Qs.x, Is, ts)
• StoreQs, Qca, Is, (rs, ss), es, ts

Figure 3: User Terminal Initialization.
USER CERTIFICATION AUTHORITY

• Choosedu ∈ [2, n − 2] • Chooseku ∈ [2, n − 2]
• Qu = du × P • Ru = ku × P

• Send
Qu−→ • Receive

• Choose uniqueIu

• ru = Ru.x
• su = k−1

u (H(Qu.x, Iu, tu) + dca · ru)

• Receive
Qca, Iu, (ru, su), tu←− • Send

• eu = H(Qu.x, Iu, tu)
• StoreQu, Qca, Iu, (ru, su), eu, tu

Figure 4: Mutual Authentication and Key Agreement.

USER SERVER

• Receive
Qs←− • Send

• Generate a random numbergu

• Send
Qu, gu−→ • Receive

• Qk = du × Qs = (du · ds) × P • Qk = ds × Qu = (ds · du) × P
• Qk.x: The mutually agreed key • Qk.x: The mutuallly agreed key

• Generate a random numbergs

• C0 = E(Qk.x, (es, (rs, ss), ts, gu, gs))

• Receive
C0←− • Send

• D(Qk.x, C0) : Is gu present?
• C1 = E(Qk.x, (eu, (ru, su), tu, gs))

• Send
C1−→ • Receive

• D(Qk.x, C1)
• If gs andtu are valid, then

• c = ss
−1 • c = su

−1

• u1 = c · es • u1 = c · eu

• u2 = c · rs • u2 = c · ru

• R = u1 × P + u2 × Qca • R = u1 × P + u2 × Qca

• v = R.x • v = R.x
• If v �= rs, then abort • If v �= ru, then abort
• km = h(Qk.x, gs, gu)msb−64 • km = h(Qk.x, gs, gu)msb−64

• km: Theunique secret key • km: Theunique secret key

.



The protocol steps and its resistance to several attacks
have been elaborated in [1]. The number of exchanged
messages of this protocol over the air is equal to 4. It is
important to minimize this number since combined with the
propagation delay it increases the call setup time. The trans-
mission time will be the dominant factor for low bit trans-
mission channels. On the other hand, the bottleneck will
be the encryption and decryption operations for high rate
transmission channels.

The protocol consists of exchanging public keys, gen-
erating random challenge numbers, exchanging encrypted
certificates and the other necessary data using the special
key, and then verifying the certificates in order to complete
mutual authentication process. The computational cost un-
til this point on the user side is just a point multiplication
on the curve (eP operation), generating a random number,
a secret key encryption and a secret key decryption (DES,
3DES, RC5, or IDEA), and finally an ECC signature verifi-
cation operation. The timing figures of these operations will
increase as we increase the ECC key length from 160 bits to
higher. The scalability protects the long term investments:
as the key length is increased, the hardware or the software
need not be modified.

The last part of the protocol establishes a session key be-
tween the user and the server. The one-time unique key
is obtained by hashing several previously obtained data
blocks. This key will be used to encrypt the data sent
through the channel.

5. Comparisons to other Existing Protocols

The parameter lengths (for 160-256 bits implementation)
and the bandwidth and storage requirements of the protocol
are summarized in Figure 5. We compare this protocol to
the Beller-Chang-Yacobi protocol [3] and Aziz-Diffie pro-
tocol [2] below.

• The protocol requires less bandwidth. The total num-
ber of bits exchanged in the real-time portion of the
protocols is given as follows:

Beller-Chang-Yacobi: 8320 bits (1024-bit key)
Aziz-Diffie: 8680 bits (1024-bit key)
This protocol: 1730 bits (160-bit key)

• The protocol has low storage requirements for the user
side, which makes it suitable for smartcards and other
handheld computing devices. Here we refer to the
space required to store public and private keys, the cer-
tificates, or any extra data required throughout the pro-
tocol:

Beller-Chang-Yacobi: 5120 bits (1024-bit key)
Aziz-Diffie: 2176 bits (1024-bit key)
This protocol: 1408 bits (160-bit key)

• The protocol has modest computational load on the
user side for real-time execution:

Beller-Chang-Yacobi:
2 PKE (1024-bit) + 1 PKD (1024-bit) +
Precomputation

Aziz-Diffie:
3 PKE (1024-bit) + 2 PKD (1024-bit)

This protocol:
1 eP (160-bit) + 1 ECDSAV (160-bit) +
2 SKE (672-bit data) + 1 SHA(288-bit data)

Meanings of the above symbols are as follows:

PKE: Public Key Encryption
PKD: Public Key Decryption
eP : Point Multiplication
ECDSAV: Elliptic Curve Digital Signature

Algorithm Verification
SKE: Secret Key Encryption or Decryption

Figure 5: The parameter lengths, bandwith, and storage.

ECC→ 160 176 192 208 256

Qu,s 161 177 193 209 257
eu,s 160 160 160 160 160

(ru,s, su,s) 320 352 384 416 512
tu,s, gu,s 64 64 64 64 64

Bandwidth 1730 1826 1922 2018 2306
Storage 1408 1520 1632 1744 2080

6. The 32-bit ARM Microprocessor and Devel-
opment Toolkit

ARM Incorporated offers several microprocessor cores,
and the 32-bit RISC processor, ARM7TDMI, is one of
them. It is of interest to us because the processor is op-
timized for the best combination of die size, performance
and power consumption. The processor uses a three-stage
pipeline: fetch, decode and execute [13]. A pure RISC pro-
cessor executes each instruction in a single cycle. However,
none of the nonsuperscalar commercial RISC processors ac-
tually achieves this goal. The ARM7 processor takes one
cycle to perform most data processing operations, which ac-
count for % 50 of all instructions in a typical code. Single
data loads take three cycles, and stores require two cycles.
Load and store multiples can take up to 18 cycles. Over-
all, the ARM7 achieves an average CPI (clock cycles per
instruction) of around 1.8 [20]. The ARM7 processor has
31 32-bit registers. At any time, 16 are visible. The other
registers are used to speed up exception processing. All reg-
ister specifiers in ARM instructions can address any of the
16 registers.



The ARM7TDMI is a very simple RISC processor. The
core is fully 32-bit including a 32-bit ALU, a barrel shifter,
data and address busses. Although the 4GB of address range
is rarely used in wireless applications, it does have the ad-
vantage of simplifying the decode logic by using the upper
address lines as chip select signals [11]. Certain features of
the processor are summarized below.

• Shortest instruction execution time:

– 800 ns (at f = 80 MHz)

• Registers:

– 30 general purpose registers

– 6 status registers

– A program counter

• Instruction Sets: 48 instructions

– Load and store instructions

– Data processing instructions

– Multiply instructions

– Coprocessor instructions

– Branch instructions

Portable and handheld products require processors that con-
sume less power than those in desktop and other powered
applications. RISC processors such as ARM7TDMI are
suitable platforms for these applications due to their low
power requirements. Furthermore, a 32-bit RISC architec-
ture makes it easy to port many different applications. This
kind of microcontrollers are also very easy to implement.
They are available as small cores which are easy to inte-
grate. Another advantage is on-chip debug support. These
advantages make this family a good match for embedded,
wireless applications.

Another advantage of the ARM7TDMI is the fact that it
has two instruction sets. The ARM7TDMI implements both
the traditional 32-bit wide ARM instruction set and the new
Thumb instruction set which is only 16 bits wide. Thumb
instruction set was added to remove the limitations of code
density and performance from narrow memory. Effectively,
the traditional 32-bit ARM instruction set was compressed
into Thumb 16-bit instruction set. Thumb instructions are
then decompressed at execution time to produce a tradi-
tional 32-bit wide ARM instruction, which is then executed
on the core as normal. As the ARM decoding is relatively
simple, it is possible to do Thumb decompression on the
fly without taking any additional cycles. The special use of
ARM Thumb instructions enables ARM to evaluate the real
GSM, DECT and D-AMPS code from the leading wireless
players. There are three main issues for benchmarking the
code [8]:

• Code Densitysshows how much memory is required
for a given high level C code. The smaller size will
result in a reduced cost.

• Performance relates to he processor’s clock speed
which is an important factor. The smaller the clock
rate to execute given algorithms, the less the power
consumed. This will also lead to easier designs. The
32-bit RISC controllers will spend most of its time in
an idle mode resulting in saving power.

• Power Consumption is one of the most important fac-
tors in wireless technology. The lower power con-
sumption will make the batteries life longer, the device
size smaller, and the price cheaper. The ARM7TDMI
consumes about 1.85 mW per MHz. On the other
hand, the StrongARM runs up to 233MHz and con-
sumes a total of 900 mW [8].

ARM7TDMI is widely accepted and used in the cel-
lular phone and smart phone technology due to its low
cost and power efficiency. The future prospects show that
ARM9TDMI will probably replace ARM7TDMI. Integrat-
ing the DSP module with ARM7 family will produce the
new ARM9 family [7].

7. Software Architecture

A practical cryptographic library implementation of the
ECCoverGF (p) was designed to perform the ECDSA sig-
nature generation and signature verification which is being
standardized in the ANSI X9F1 and IEEE P1363 standards
committees. The IEEE-P1363 describes the algorithms in
detail for elliptic point addition, doubling, multiplication,
etc.

In creation of our library, we did not make any assump-
tion on the elliptic curve parameters to be used. Elliptic
curves can be generated randomly. Note that some ECDSA
implementations fix the constant term a of the curve equa-
tion to p − 3 to speed up the elliptic doubling. In our case,
the curve parameters and the base point(Px, Py) are gener-
ated randomly. Our library allows users to choose different
curves with different key lengths, therefore our library is
scalable. The machine word size is 32-bit on the ARM mi-
croprocessor. The library is implemented in 27 kilobytes of
code size. The modified Jacobian coordinates are used to
represent the points on the curves since it gives the fastest
point doubling timings. Short definitions of the modules are
given as follows.

Modulo p Integer Library This module contains modular
operations such as modular addition, subtraction, mul-
tiplication and inversion operations modulop. In the
ECDSA signature generation operation, these routines



consume the largest amount of time. Particularly, the
modular multiplication operation dominates the timing
performance of an EC signature. To improve the per-
formance, we use an improved version of the Mont-
gomery multiplication algorithm.

General Integer Library This library contains general
operation routines. These routines accept variable
length inputs.

EC Point Arithmetic Library This library consists of
point addition, point doubling, and point multiplica-
tion routines. The point addition and doubling routines
are performed using the modified Jacobian coordinate
system.

ECDSA Key and Signature Generation/Verification
This is the root module of our software architecture.
The elliptic curve parameters and key generation are
performed here. Upon creating these parameters,
this top module can interact with other modules to
generate signatures or to verify signatures. Note that
our library does not contain a digest algorithm such as
SHA-1 or MD5. We use randomly generated 160-bit
message values, which is assumed to be the output of
a hash function algorithm, to test the modules.

8. Implementation Results

In this section, we present our implementation results.
The elliptic curve signature generation and verification tim-
ings are listed for variable key lengths to give an idea about
how fast these operations could be done in today’s tech-
nology. Figure 6 shows the timings of the operations for
variable ECC key lengths.

Figure 6: The timings in milliseconds.

ECC→ 160 176 192 208 256
DES 0.25 0.25 0.25 0.25 0.25
SHA 2 2 2 2 2

Point Mul 44.8 63.4 69.2 93.6 150.2
Sign Gen 46.4 65.4 71.3 96.2 153.5
Sign Ver 92.4 131.3 148.3 194.3 313.4
Protocol 139.7 197.2 220 290.4 466.1

Note that our library does not have a random number
generator (RNG). Generating a random number is very fast
therefore its timing value is negligible compared to the other
operations such as point multiplication and signature gener-
ation. Similarly SHA operations can be executed very fast.
According to the implementation in [9], the SHA-1 requires
approximately 2 ms digesting one block (512 bits) of data.
It is a hardware implementation on a 16-bit Mitsubishi mi-
croprocessor (M16C). In our protocol the input size to the

SHA-1 is given ask+128 where k is being the implemented
elliptic curve key length. The largestk value shown in the
table is 256 bits for which the input size for SHA-1 is 384-
bits. Therefore, for each key length given in the Figure 6,
the SHA-1 input length in our protocol should be padded to
reach 512-bit block size. We assume that in the worst case
scenario we will obtain 2 msec timing value for processing
a block of data using SHA-1.

9. Conclusions

In this paper, we presented a practical implementation of
the ECC over the fieldGF (p). The field and elliptic curve
operation algorithms in the library were written in a way
that the implemented design will permit the use of increased
key lengths.

In our implementation, we created an ECC library, which
is capable of performing the ECDSA signature generation
and verification operations. More importantly, the imple-
mentation permits users to select different elliptic curves
with longer key sizes. This scalable architecture of the de-
sign enables the ECC being used in restricted platforms as
well as high-end servers. With this implementation, we ob-
tained timing results less than 100 ms for both the ECC-
160 signature generation and verification on a 32-bit ARM
processor. In addition, the timing results were obtained for
a recently proposed wireless authentication and key agree-
ment protocol [1]. This protocol can be used in third gen-
eration wireless communication as a security protocol due
to its bandwidth and storage efficiency and fast execution
timing performance.

Possible enhancements for further speeding up and/or re-
ducing the code size are:

• The scalar multiplication of the base point can be per-
formed in more efficient way by having a precomputed
look-up table in ROM area.

• The finite field multiplication operations dominate the
performance of signature generation and verification.
Even a small improvements on the existing multipli-
cation routine improves the overall ECDSA perfor-
mance.

• The 16-bit wide Thumb instruction set of
ARM7TDMI can be used to reduce the code
size.

10. Acknowledgements

This research was supported by Secured Information
Technology, Inc.



References

[1] M. Aydos, B. Sunar, and C¸ .. K. Koç. An elliptic curve cryp-
tography based authentication and key agreement protocol
for wireless communication. In2nd International Workshop
on Discrete Algorithms and Methods for Mobile Comput-
ing and Communications Symposium on Information The-
ory, Dallas, Texas, October 30, 1998.

[2] A. Aziz and W. Diffie. A secure communications protocol
to prevent unauthorized access: Privacy and authentication
for wireless local area networks.IEEE Personal Communi-
cations, pages 25–31, First Quarter 1994.

[3] M. J. Beller, L.-F. Chang, and J. Yacobi. Privacy and au-
thentication on a portable communications systems.IEEE
Journal on Selected Areas in Communications, 11(6):821–
829, Aug. 1993.

[4] I. Blake, G. Seroussi, and N. Smart.Elliptic Curves in
Cryptography. Cambridge University Press, New York, NY,
1999.

[5] Certicom. SigGen Smart Card.
http://205.150.149.57/ce2/embed.htm, 1997.

[6] H. Cohen, A. Miyaji, and T. Ono. Efficient elliptic curve
exponentiation using mixed coordinates. In K. Ohta and
D. Pei, editors,Advances in Cryptology – ASIACRYPT 98,
Lecture Notes in Computer Science, No. 1514, pages 51–65.
Springer, Berlin, Germany, 1998.

[7] O. Gunasekara. Smart phone challenges.
http://www.arm.com/Documentation/White
Papers/SmartPhone, 1997.

[8] O. Gunasekara. Developing a digital cellular phone using a
32-bit microcontroller.
http://www.arm.com/Documentation/White
Papers/CellPhone, 1998.

[9] T. Hasegawa, J. Nakajima, and M. Matsui. A practical im-
plementation of elliptic curve cryptosystems overGF (p)
on a 16-bit microcomputer. In H. Imai and Y. Zheng, edi-
tors,First International Workshop on Practice and Theory in
Public Key Cryptography, Lecture Notes in Computer Sci-
ence, No. 1431, pages 182–194. Springer, Berlin, Germany,
1998.

[10] IEEE. P1363: Standard specifications for public-key cryp-
tography. Draft Version 13, November 12, 1999.

[11] ARM Incorporated.Advanced RISC Machines Architectural
Reference Manual. Prentice-Hall, New York, NY, 1996.

[12] K. Itoh, M. Takenaka, N. Torii, S. Temma, and Y. Kurihara.
Fast implementation of public-key cryptography on a dsp
tms320c6201. In C¸ . K. Koç andC. Paar, editors,Crypto-
graphic Hardware and Embedded Systems, Lecture Notes in
Computer Science, No. 1717, pages 61–72. Springer, Berlin,
Germany, 1999.

[13] D. Jaggar. ARM architecture and systems.IEEE Micro,
pages 9–11, July/August 1997.

[14] N. Koblitz. A Course in Number Theory and Cryptography.
Springer, Berlin, Germany, Second edition, 1994.

[15] Ç. K. Koç. High-Speed RSA Implementation. Technical Re-
port TR 201, RSA Laboratories, 73 pages, November 1994.

[16] Ç. K. Koç, T. Acar, and B. S. Kaliski Jr. Analyzing and com-
paring Montgomery multiplication algorithms.IEEE Micro,
16(3):26–33, June 1996.

[17] A. K. Lenstra and E. R. Verheul. Selecting cryptographic
key sizes. InThe 3rd Workshop on Elliptic Curve Cryptog-
raphy (ECC 99), Waterloo, Canada, November 1–3 1999.

[18] A. J. Menezes.Elliptic Curve Public Key Cryptosystems.
Kluwer Academic Publishers, Boston, MA, 1993.

[19] P. L. Montgomery. Modular multiplication without trial divi-
sion. Mathematics of Computation, 44(170):519–521, Apr.
1985.

[20] S. Segars. ARM7TDMI power consumption.IEEE Micro,
pages 12–19, July/August 1997.


