
Mastrovito Multiplier
for General Irreducible Polynomials � ��

A. Halbutoǧulları1 and Ç. K. Koç2

1 i2 Technologies, 565 Technology Square, 9th Floor, Cambridge, MA 02139
2 Electrical & Computer Engineering, Oregon State University, Corvallis, OR 97331

Abstract. We present a new formulation of the Mastrovito multiplica-
tion matrix and an architecture for the multiplication operation in the
field GF (2m) generated by an arbitrary irreducible polynomial. We study
in detail several specific types of irreducible polynomials, e.g., trinomi-
als, all-one-polynomials, and equally-spaced-polynomials, and obtain the
time and space complexity of these designs. Particular examples, illus-
trating the properties of the proposed architecture, are also given. The
complexity results established in this paper match the best complexity
results known to date. The most important new result is the space com-
plexity of the Mastrovito multiplier for an equally-spaced-polynomial,
which is found as (m2 − ∆) XOR gates and m2 AND gates, where ∆ is
the spacing factor.

1 Introduction

Efficient hardware implementations of the arithmetic operations in the Galois
field GF (2m) are frequently desired in coding theory, computer algebra, and
public-key cryptography [10, 9, 6]. The measure of efficiency is the number of
gates (XOR and AND) and also the total gate delay of the circuit. The repre-
sentation of the field elements have crucial role in the efficiency of the architec-
tures for the arithmetic operations. For example, the well-known Massey-Omura
[11] algorithm uses the normal basis representation, where the squaring of a
field element is equivalent to a cyclic shift in its binary representation. Effi-
cient bit-parallel algorithms for the multiplication operation in the canonical
basis representation, which have much less space and time complexity than the
Massey-Omura multiplier, have also been proposed.

The standard (polynomial) basis multiplication requires a polynomial mod-
ular multiplication followed by a modular reduction. In practice, these two steps
can be combined. A novel method of multiplication is proposed by Mastrovito [7,
8], where a matrix product representation of the multiplication operation is used.
The Mastrovito multiplier using the special generating trinomial xm + x + 1 is

� This research is supported in part by Secured Information Technology, Inc.
�� Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, M. Fossorier,

H. Imai, S. Lin, and A. Poli, editors, Lecture Notes in Computer Science, No. 1719,
pages 498–507, Springer-Verlag, Berlin, 1999.

shown to require (m2−1) XOR gates and m2 AND gates [7, 8, 12, 13]. It has been
conjectured [7] that the space complexity of the Mastrovito multiplier would also
be the same for all trinomials of the form xm + xn + 1 for n = 1, 2, . . . , m − 1.
This conjecture was shown to be false by Sunar and Koç [14] for the case of
m = 2n. The architecture proposed in [14] requires (m2 − 1) XOR gates and
m2 AND gates, when m �= 2n. However, the required number of XOR gates is
reduced to (m2 − m

2) for the trinomial xm + x
m
2 + 1 where m is even.

In this study, we generalize the approach of [14] in several different ways.
We describe a method of construction for the Mastrovito multiplier for a general
irreducible polynomial. We give detailed space and time analysis of the proposed
method for several types of irreducible polynomials. In each case, the method
proposed in this paper gives complexity results matching the best known results
up to date. The detailed analyses are given in the full version of this paper [2].
In this paper, we give the general approach and summarize the findings.

The most important result of the this study is in the case equally-spaced-
polynomial (ESP), i.e., a polynomial of the form

p(x) = xk∆ + x(k−1)∆ + · · ·+ x∆ + 1 , (1)

where k∆ = m. The proposed Mastrovito multiplier for an ESP requires (m2−∆)
XOR gates and m2 AND gates. For k = 2, the ESP reduces to the equally-spaced-
trinomial (EST) xm+x

m
2 +1, and for ∆ = 1, it reduces to the all-one-polynomial

(AOP). Our method requires (m2−m
2) XOR and m2 AND gates for the trinomial

of the form xm +x
m
2 +1 for an even m, matching the result in [14]. Furthermore,

our proposed architecture requires (m2 − 1) XOR gates and m2 AND gates
when the irreducible polynomial is an AOP. This result matches the best known
space complexity result to date for the canonical basis multiplication based on
an irreducible AOP, as given in [5]. Their architecture requires (m2 − 1) XOR
gates and m2 AND gates, and has the lowest space complexity among similar
bit-parallel multipliers [7, 4, 3].

We introduce the fundamentals of the Mastrovito multiplier and the notation
of this paper in §2. The architecture of the Mastrovito multiplier for a general
irreducible polynomial is described in §3. We also give detailed complexity anal-
ysis in §4. The full version of this paper [2] contains the architectural details
of the multipliers based on binomials, trinomials, ESPs, and AOPs. For each
case, a detailed complexity analysis and a design example are given in [2]. The
conclusions of this study are summarized in §5.

2 Notation & Preliminaries

Let p(x) be the irreducible polynomial generating the Galois field GF (2m). In
order to compute the multiplication c(x) = a(x)b(x) mod p(x) in GF (2m), where
a(x), b(x), c(x) ∈ GF (2m), we need to first compute the product polynomial

d(x) = a(x)b(x) =

(
m−1∑
i=0

aix
i

) (
m−1∑
i=0

bix
i

)
(2)

and then reduce d(x) using p(x) to find the result c(x) ∈ GF (2m). We can
compute coefficients of d(x) using following matrix-vector product:

d0

d1

d2

...
dm−2

dm−1

dm

dm+1

...
d2m−3

d2m−2

=

a0 0 0 · · · 0 0
a1 a0 0 · · · 0 0
a2 a1 a0 · · · 0 0
...

...
...

. . .
...

...
am−2 am−3 am−4 · · · a0 0
am−1 am−2 am−3 · · · a1 a0

0 am−1 am−2 · · · a2 a1

0 0 am−1 · · · a3 a2

...
...

...
. . .

...
...

0 0 0 · · · am−1 am−2

0 0 0 · · · 0 am−1

b0

b1

b2

...
bm−2

bm−1

. (3)

We will denote this multiplication matrix by M and its rows denoted by Mi,
where i = 0, 1, . . . , 2m−2. Note that the entries of M solely consist of coefficients
of a(x). We also define the m ×m submatrix U(0) of M as the first m rows of
M, and the (m − 1) ×m submatrix L(0) of M as the last (m − 1) rows of M,
i.e.,

U(0) =

a0 0 0 · · · 0 0
a1 a0 0 · · · 0 0
a2 a1 a0 · · · 0 0
...

...
...

. . .
...

...
am−2 am−3 am−4 · · · a0 0
am−1 am−2 am−3 · · · a1 a0

, (4)

L(0) =

0 am−1 am−2 · · · a2 a1

0 0 am−1 · · · a3 a2

...
...

...
. . .

...
...

0 0 0 · · · am−1 am−2

0 0 0 · · · 0 am−1

 . (5)

We use the superscripts to denote the step numbers during the reduction process,
for example, L(0), L(1), etc. The superscript f indicates the final form of the
matrix, for example, L(f). The rows in the submatrix L(0) of matrix M is reduced
using the irreducible polynomial p(x), so that, at the end of reduction, L(f)

becomes the zero matrix. During the reduction process, the rows of L are added
to the rows with lower indices according to the irreducible polynomial. During
the reduction of a single row, this row is added to certain other rows. We call all
of these rows the children of the reduced row. The final submatrix U(f) is equal
to the so-called Mastrovito matrix Z, which is multiplied by the column vector
b to produce the result as c = Zb.

We use ‖ to represent the concatenation of two vectors. For example, the
vectors V = [vn, vn−1, . . . , v0] and W = [wn, wn−1, . . . , w0] can be concatenated

to form a new vector of length 2(n + 1) as follows:

V ‖W = [vn vn−1 · · · v1 v0 wn wn−1 · · · w1 w0] .

In general, two vectors need not be of equal length in order to be concatenated.
Also during the reduction, the vectors are shifted to the right or left, where
the empty locations are filled with zeros. We use the right and left arrows to
represent the right and left shifts. For example, (V→ 3) and (V← 2) represent
right and left shifts of the vector V by 3 and 2 positions, respectively, which are
explicitly given as

(V→ 3) = [0 0 0 vn vn−1 · · · v6 v5 v4 v3] ,
(V← 2) = [vn−2 vn−3 vn−4 vn−5 vn−6 · · · v1 v0 0 0] .

Furthermore, at certain steps of the reduction, vectors are used to form matrices.
For example, to form a matrix using the last (n−1) entries of the above vectors,
the following notation is adopted:
 V

(V→ 3)
(V← 2)

3×(n−1)

=

 vn−2 vn−3 vn−4 vn−5 · · · v3 v2 v1 v0

0 vn vn−1 vn−2 · · · v6 v5 v4 v3

vn−4 vn−5 vn−6 vn−7 · · · v2 v1 0 0

 .

As seen above, although the original vectors are longer, only the last (n − 1)
entries are used, and the rest is discarded.

During the reduction operation, we frequently encounter certain special ma-
trices. A particular matrix type is the Toeplitz matrix, which is a matrix whose
entries are constant along each diagonal. It is well-known that the sum of two
Toeplitz matrices is also a Toeplitz matrix [1]. This property will be used to
establish a recursion.

Finally, we note that the gates used in the proposed design are 2-input AND
and XOR gates, whose delays are denoted by TA and TX , respectively.

3 General Polynomials

We start with the most general form an irreducible polynomial as

p(x) = xnk + xnk−1 + · · ·+ xn1 + xn0 , (6)

where ni for i = 0, 1, 2, . . . , k are positive integers with the property

m = nk > nk−1 > · · · > n1 > n0 = 0 .

The difference between the highest two orders, i.e., nk − nk−1 = m− nk−1 will
be denoted by ∆.

In the following, we first summarize the general outline of the reduction
process, and then, propose a method to obtain the same result more efficiently.

When the irreducible polynomial (6) is used to reduce the rows of L(0), each
row will have k children. The one corresponding to the constant term xn0 = 1 is

guaranteed to be added to a row in U, but the others might be added to the rows
of L, and will need to be reduced further. To simplify the notation and observe
the regularity, we use k additional matrices. The children produced due to the
reductions corresponding to the xni term will be added to the m × m matrix
Xi(1), for i = 0, 1, . . . , (k − 1). The children that fall back into the submatrix L
are stored in L(1), which are to be reduced later.

By introducing the Xi matrices, we preserve the matrix U(0) during the
reduction. At the end of the first step, i.e., when every row of matrix L(0) is
reduced exactly once, the following matrices will be produced:

U(1) = U(0) + X0(1) + X1(1) + · · ·+ X(k− 1)(1) , (7)

where

Xi(1) =

0 0 0 · · · 0 · · · 0 0
...

...
...

...
...

...
...

...
0 0 0 · · · 0 · · · 0 0
0 am−1 am−2 · · · ani

· · · a2 a1

0 0 am−1 · · · ani+1 · · · a3 a2

...
...

...
. . .

...
...

...
...

0 0 0 · · · am−1 · · · am−ni+1 am−ni

0
...

ni − 1
ni

ni + 1
...

m− 1

(8)

for i = 0, 1, . . . , (k − 1). The part of matrix M, which is to be further reduced
after the first step, will be

L(1) =

0 · · · 0 l
(1)
m−1 l

(1)
m−2 · · · l

(1)
∆+2 l

(1)
∆+1

0 · · · 0 0 l
(1)
m−1 · · · l

(1)
∆+3 l

(1)
∆+2

...
...

...
...

...
. . .

...
...

0 · · · 0 0 0 · · · l
(1)
m−1 l

(1)
m−2

0 · · · 0 0 0 · · · 0 l
(1)
m−1

0 · · · 0 0 0 · · · 0 0
...

...
...

...
...

...
...

...
0 · · · 0 0 0 · · · 0 0

0
1
...

n(k−1) − 3
n(k−1) − 2
n(k−1)−1

...
m− 2

. (9)

As seen above, the new matrix L(1) which will be reduced in the next step is also
triangular. This means the new children will also be in the same form, except
that they will contain more zero terms at the beginning. Thus, it is clear that if
the same procedure is recursively applied, the submatrix U(0) will never change,
and the forms of the matrices Xi and L will remain the same after every step,
i.e., Xi matrices will be trapezoidal and L will be triangular. The entries which
are zero and outside the indicated geometric regions after the first iteration will
always remain zero. Only the values inside these regions will be changed during
the rest of the reduction. The number of nonzero rows of L after step j, i.e., the
number of nonzero rows in L(j) is given as

rj = (m− 1)− j (m− n(k−1)) = (m− 1)− j ∆ , (10)

since there are (m−1) nonzero rows initially, i.e., r0 = (m−1), and the number
is reduced by ∆ = (m− n(k−1)) after each step. Thus, it will take

N [m, ∆] =
⌈

m− 1
∆

⌉
(11)

steps to reduce the whole matrix L(0). This number is also equal to the number
of nonzero terms in the row L0 at the end of step j, i.e., the number of nonzero
terms in the row L(j)

0 for j = 1, 2, . . . , N [m, ∆]−1. Note that the range of j does
not include j = N [m, ∆], as the number of nonzero rows becomes zero after step
N [m, ∆], but the number rj will be negative for j = N [m, ∆].

First the matrix M is divided into the upper and lower submatrices U(0) and
L(0). The matrix L(0) is reduced into k matrices using the irreducible polynomial,
while U(0) is kept unchanged. The upper and lower parts of the new matrices
are then separated. The upper parts form the Xi(1) matrices and the lower
parts are accumulated into the matrix L(1). The merged lower parts are to be
further reduced in the next step. This procedure is repeated until the matrix L
becomes the zero matrix, i.e., all rows are reduced. The total reduction process
is illustrated in Figure 4. The sum of the matrices in the last row, i.e., U(0) and
Xi(f) for i = 0, 1,. . .,(k − 1), yields the Mastrovito matrix Z.

A close inspection shows that all submatrices formed by the nonzero rows of
the matrices produced after the first iteration are Toeplitz matrices. When the
matrix L(1) is reduced further, the children will be added to the nonzero rows
of the matrices Xi(1) and L(2), which are Toeplitz submatrices. Since the sum
of two Toeplitz matrices is also a Toeplitz matrix [1], the submatrices formed
by the nonzero rows will all be Toeplitz submatrices. Furthmore, these matrices
are special Toeplitz matrices, computing only the first nonzero rows of Xi(f) is
sufficient to reconstruct them. Similarly, the matrix M and the submatrices U(0)

and L(0) can be constructed using only the row Mm−1. Furthermore, since all
first nonzero rows of the matrices Xi(f) are identical, we only need to compute
one of them. Thus, it suffices to work on X0(f)

0 whose final value is computed
as follows:

N [m,∆]−1∑
j=0

L(j)
0 = L(0)

0 + L(1)
0 + · · ·+ L(N [m,∆]−1)

0 . (12)

This will be used with U(0) to construct the final matrix Z. First, the rows
Zni

are constructed by adding the corresponding rows of the matrix U(0) to
Xi(f)

ni
for i = 0, 1, . . . , k − 1. Then, they are extended to larger vectors Yi by

concatenating the necessary parts of U(0) to their beginning so that the shifts of
Yi produce the rows below them up to the row ni+1, or up to the row (m− 1)
if i = (k − 1). This will simplify the construction of the matrix Z. To further
simplify the representations, the first nonzero rows of Xi, which are all identical,
represented by the vector V, will be used. Instead of referring to U(0) and L(0),
we will use the original multiplication matrix M or its entries ai. The summary
of the proposed method is given below:

1. First, we compute V given as

V =
N [m,∆]−1∑

j=0

L(j)
0 = [0 vm−1 vm−2 · · · v3 v2 v1] (13)

using the recursive definition of

L(j)
0 =

∑
(k − 1) ≥ i ≥ 0

r(j−1) > (m− ni)

(L(j−1)
0 → (m− ni)) (14)

for 1 ≤ j ≤ N [m, ∆]− 1 to reduce everything to the sum of shifts of the row
L(0)

0 or equivalently to the sum of rows in M. The above summation means
that the row L(j−1)

0 is shifted (m − n(k−1)) times, (m − nk−2) times, etc.,
until all entries become zero. Then, these are all added to form L(j)

0 . Here
we note that V is not computed until it is completeley reduced to the sum
of rows of M, since there might be cancellations. This fact will be taken into
account during the complexity analysis.

2. Then, we compute Zni
for i = 0, 1, . . . , (k − 1) using the following recursive

relations:

Z0 = [a0] ‖ [V]1×(m−1) = [a0 vm−1 vm−2 · · · v3 v2 v1] , (15)

Zni =
(
[Mm+n(i−1)]1×∆i ‖ [Zn(i−1) → ∆i]1×(m−∆i)

)
+ V , (16)

where ∆i = (ni − n(i−1)) for i = 1, 2, . . . , (k− 1). Thus, if V and Zn(i−1) are
given as

V = [0 vm−1 vm−2 · · · v3 v2 v1] ,

Zn(i−1) = [an(i−1) wm−1 wm−2 . . . w3 w2 w1] ,

then Zni is obtained as

Zni = [ani (ani−1 +vm−1) · · · (an(i−1) +vm−∆i) (wm−1 +vm−1−∆i) · · ·

· · · (w∆i+1 + v1)] .

3. By extending Zni
, we find Yi = [Mm+ni

]1×(∆(i+1)−1) ‖ Zni
] for i =

0, 1, . . . , (k − 1) as follows:

Yi = [an(i+1)−1 · · · ani+1 ani (ani−1 + vm−1) · · ·
· · · (a0 + vm−ni) (wm−1 + vm−ni−1) · · · (wni+1 + v1)] .(17)

4. Finally, the whole Z matrix is constructed as follows:

Z =

Y0
Y0→ 1

...
Y0→ (∆1 − 1)

Y1
Y1→ 1

...

...
Y(i− 1)→ (∆i − 1)

Yi
Yi→ 1

...

...
Y(k− 2)→ (∆(k−1) − 1)

Y(k− 1)
Y(k− 1)→ 1

...
Y(k− 1)→ (∆− 1)

m×m

0
1
...

(n1 − 1)
n1

(n1 + 1)
...
...

(ni − 1)
ni

(ni + 1)
...
...

(n(k−1) − 1)
n(k−1)

(n(k−1) + 1)
...

(m− 1)

(18)

We note that while the vectors Yi or their shifted versions are of different
length, we take the last m elements of these vectors to form the m × m
matrix Z.

4 Complexity Analysis

The formula of the vector V in Equation (13) includes the shifted versions of L(j),
which finally reduce to the shifted versions of the row L(0)

0 when the recursive
formula is used. Since all right-shifted versions of the row L(0)

0 = Mm are present
in the original multiplication matrix M, it is possible to represent the vector V
as a sum of rows of this matrix. Except for the row L(0)

0 itself, the minimum
shift is equal to ∆. Thus, after cancellations, the indices of the rows will be a
subset S of the set of indices

m, (m + ∆), (m + ∆ + 1), . . . , (2m− 3), (2m− 2) .

The first row with the smallest index can be used as a base for the addition,
and the rest of the rows will be added to this row. Thus, the actual subset to
be added to this base vector is (S − minS), which will be called as S∗. Since
the row Mj has exactly (2m − 1 − j) nonzero terms for 2m − 2 ≥ j ≥ m,
and adding each nonzero term requires a single XOR gate, the total number

of XOR gates required to compute the first form of V will be equal to the
sum

∑
j∈S∗(2m− 1− j). The delay in the computation of the vector V can be

minimized when the binary tree method is used to compute the summation in
each entry. Since there are at most |S| items to be added to compute any entry,
the delay of the computation will be �log2 |S|�TX , where |S| denotes the order
of the set S. When the recursive relations in Equations (15) and (16) are used,
the construction of Z0 requires only rewiring. We then construct Zni

by adding
the vector V to the vector formed by concatenation, which requires (m − 1)
XOR gates since the vector V has only (m − 1) nonzero terms. Thus, we need
(k − 1)(m − 1) XOR gates to compute all Zni for i = 1, 2, . . . , (k − 1). Since
the time needed to compute a single row Zni

is TX , the total delay to compute
all rows is (k − 1)TX . The vectors Y0 and Y1 are then found using Equation
(17) by rewiring. The construction of Z in Equation (18) is also performed using
rewiring since it consists of shifts.

To find the final result c(x) via the product c = Zb, we also need m2 AND
gates and m(m− 1) XOR gates. Each coefficient of the final result c(x) can be
computed independently via the product ci = Zib. All multiplications can be
done in one level, and the m terms can be added using the binary tree method in
�log2 m�TX time. Therefore, the entire computation for the general case requires
m2 AND gates and

(m− 1)(m + k − 1) +
∑
j∈S∗

(2m− 1− j) (19)

XOR gates. The total delay of the circuit is given as

TA + (�log2 |S|�+ (k − 1) + �log2 m�) TX . (20)

5 Conclusions

In this paper, we present a new architecture for the Mastrovito multiplication
and rigorous analysis of the complexity for a general irreducible polynomial.
In this paper, we give a rigorous analysis of the Mastrovito multiplier for a
general irreducible polynomial, and show that it requires m2 AND gates and
(m− 1)(m + k− 1) +

∑
j∈S∗(2m− 1− j) XOR gates, where S∗ is defined in §4.

In the full version of this paper [2], we extend this analysis to certain types of
irreducible polynomials. These results are summarized in Table 1.

Table 1: The XOR complexity results for the Mastrovito multiplier.

Polynomial XOR Complexity Reference
Trinomial m2 − 1 [7] [8] [12] [13] [14] [2]

EST m2 − m
2 [14] [2]

AOP m2 − 1 [5] [2]
General (m− 1)(m + k − 1) +

∑
j∈S∗(2m− 1− j) §4

ESP m2 −∆ [2]

References

1. G. H. Golub and C. F. van Loan. Matrix Computations. Baltimore, MD: The
Johns Hopkins University Press, 3rd edition, 1996.

2. A. Halbutoǧulları and Ç. K. Koç. Mastrovito multiplier for general irreducible
polynomials. Submitted for publication in IEEE Transactions on Computers, June
1999.

3. M. A. Hasan, M. Z. Wang, and V. K. Bhargava. Modular construction of low com-
plexity parallel multipliers for a class of finite fields GF (2m). IEEE Transactions
on Computers, 41(8):962–971, August 1992.

4. T. Itoh and S. Tsujii. Structure of parallel multipliers for a class of finite fields
GF (2m). Information and Computation, 83:21–40, 1989.

5. Ç. K. Koç and B. Sunar. Low-complexity bit-parallel canonical and normal basis
multipliers for a class of finite fields. IEEE Transactions on Computers, 47(3):353–
356, March 1998.

6. R. Lidl and H. Niederreiter. Introduction to Finite Fields and Their Applications.
New York, NY: Cambridge University Press, 1994.

7. E. D. Mastrovito. VLSI architectures for multiplication over finite field GF(2m).
In T. Mora, editor, Applied Algebra, Algebraic Algorithms, and Error-Correcting
Codes, 6th International Conference, AAECC-6, Lecture Notes in Computer Sci-
ence, No. 357, pages 297–309, Rome, Italy, July 1988. New York, NY: Springer-
Verlag.

8. E. D. Mastrovito. VLSI Architectures for Computation in Galois Fields. PhD the-
sis, Linköping University, Department of Electrical Engineering, Linköping, Swe-
den, 1991.

9. A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Boston, MA: Kluwer
Academic Publishers, 1993.

10. A. J. Menezes, I. F. Blake, X. Gao, R. C. Mullen, S. A. Vanstone, and
T. Yaghoobian. Applications of Finite Fields. Boston, MA: Kluwer Academic
Publishers, 1993.

11. J. Omura and J. Massey. Computational method and apparatus for finite field
arithmetic. U.S. Patent Number 4,587,627, May 1986.

12. C. Paar. Efficient VLSI Architectures for Bit Parallel Computation in Galois
Fields. PhD thesis, Universität GH Essen, VDI Verlag, 1994.

13. C. Paar. A new architecture for a paralel finite field multiplier with low complexity
based on composite fields. IEEE Transactions on Computers, 45(7):856–861, July
1996.

14. B. Sunar and Ç. K. Koç. Mastrovito multiplier for all trinomials. IEEE Transac-
tions on Computers, 48(5):522–527, May 1999.

