
Proceedings of the 33rd Annual Allerton Conference on Communication, Control, and Computing
pages 440-446, Urbana, Illinois, October 4-6, 1995

Parallel Matrix Sign Iterations �

B. Bakkalo�glu and C� . K. Ko�c

Department of Electrical & Computer Engineering

Oregon State University

Corvallis, Oregon 97331

Abstract

We have implemented three matrix sign function algorithms on a Meiko CS-2 multiprocessor
using the Parallel Virtual Machine (PVM) software. These matrix sign function algorithms are the
well-known Newton's method [3], the partial fraction expansion algoritm [12], and the continued
fraction algorithm [9]. The parallelization of Newton's method is straightforward since it utilizes
parallel LU decomposition. The parallel matrix sign function algorithm based on partial fraction
expansion was given by Pandey, Kenney, and Laub in [12]. Our contribution in this paper was
to introduce a new parallel iterative algorithm to compute the sign function of a complex matrix,
based on the continued fraction expansion of the inverse of the principal square root function. This
algorithm uses parallel matrix mutiplications and linear system solutions at each step, and is suitable
for vector and parallel machines due to its multiplication-rich nature. We have written all three
algorithms in PVM, obtaining a highly portable code which can be compiled and executed on a
network of workstations as well as on sophisticated multiprocessor machines. We summarize the
results of our experiments on an 8-processor Meiko CS-2.

1 Introduction

The matrix sign function has several applications in system theory, matrix analysis, and communica-
tions, e.g., solution of algebraic Riccati and matrix Lyapunov equations [10], system decomposition
and model reduction [14, 11], separation of eigenpairs [4], condition theory [5], and recently the
numerical solution of M/G/1 and G/M/1 type Markov chains [1]. The matrix sign function maps
the stable and unstable eigenvalues of a given matrix to �1 and 1, respectively, while preserving
the eigenvectors of the original matrix. This property of the matrix sign function is useful for
studying the eigenstructures of matrices without explicitly computing the eigenvalues. The sign of
a complex scalar � is de�ned over Re(�)6= 0 by

sign(�) =

(
1 if Re(�) > 0 ,

�1 if Re(�) < 0 .

This de�nition can be extended to a matrix A 2 Cn�n whose eigenvalues do not lie on the imaginary
axis. Let M take A to its Jordan form J as

A =MJM�1: (1)

�This research was supported in part by the National Science Foundation under the grants ECS{9312240 and

CDA{9216172.

1

Proceedings of the 33rd Annual Allerton Conference on Communication, Control, and Computing
pages 440-446, Urbana, Illinois, October 4-6, 1995

Let J be de�ned as

J =

"
J+ 0
0 J�

#
= J+ � J�

where J+ 2 Cn1�n1 and J� 2 Cn2�n2 are the Jordan blocks with Re(�(A)) > 0 and Re(�(A)) < 0,
respectively, and n = n1 + n2. Applying sign function to both sides of Equation (1) we obtain

sign(A) =M sign(J) M�1 .

The matrix sign of the Jordan blocks determine the sign of A as follows:

sign(A) =M

"
sign(J+) 0

0 sign(J�)

#
M�1 =M

"
I 0
0 �I

#
M�1 . (2)

Equation (2) shows that the Jordan blocks corresponding to positive (negative) eigenvalues are
mapped to positive (negative) identity matrices, whose dimensions are the same as the number
of positive (negative) eigenvalues. It follows that S = sign(A) is a diagonalizable matrix which
commutes with A and is a square root of the identity, i.e.,

S2 = I and AS = SA . (3)

Equation (3) is a quadratic equation in S, and can be solved by Newton's method [13]. Another
de�nition, which is based on integral representation, is given in [13]. It uses the integral formula

A+ =
1

2�j

Z
C
(zI �A)�1dz ,

where C is a simple closed contour in C+, containing the eigenvalues of A with positive real part.
Using the equality A+ = (sign(A) + I)=2, we obtain an integral expression for sign(A) as follows:

sign(A) =
2A

�

Z
1

0
(y2I +A2)�1dy .

The parallel computation of matrix sign function has recently received attention in order to deal
with large matrices [3, 12]. In the following we give brief descriptions of the previously proposed
parallel algorithms along with the new parallel algorithm. The analysis of these parallel algorithms
are performed by counting the number of arithmetic operations and communication steps per
iteration. The number of iterations needed for the convergence is a function of several factors, e.g.,
the size and condition of the matrix, certain properties of the algorithm, etc. The implementation
results on an 8-processor Meiko CS-2 multiprocessor using the PVM software are summarized in
Section 5.

2 The Parallel Newton Iteration

This algorithm is a slightly modi�ed version of the symmetric pivoting algorithm of [3]. The orig-
inal algorithm has been applied to solution of the algebraic Riccati equation, where the iteration
is carried on a matrix pencil with Hamiltonian-like structure. The structure of the pencil has the
property that multiplying with an anti-diagonal identity matrix would convert it to a symmetric
matrix. In this paper we have implemented a modi�ed version of this algorithm for �nding the

2

Proceedings of the 33rd Annual Allerton Conference on Communication, Control, and Computing
pages 440-446, Urbana, Illinois, October 4-6, 1995

matrix sign function of a general nonsymmetric matrix. The algorithm is based on parallel factor-
ization of the iteration matrix Sk 2 Rm�m at each step of the algorithm. We obtain the inverse
of the symmetric matrix Sk in parallel and compute its determinant dk in order to calculate the
scaling factor
k. The algorithm starts with S[0] = A, and proceeds using the iteration

S[k + 1] =
1

2
(
1

k
S[k] +
kS

�1[k]) . (4)

The determinantal scaling factor [7] is given as

k = jdetS[k]j1=m .

The inverse of the iteration matrix S[k] is computed and the scaling factor
k is obtained during
the parallel LU decomposition. The iteration matrix S[k] is distributed among p processors in
a column-wrapped fashion so that each processor works on an array of n � n=p elements. The
parallel LU decomposition requires O(n3=p) arithmetic operations and O(n) communication steps.
The scaling and matrix addition requires O(n2=p) arithmetic steps. Finally, each processor sends
its portion of the iteration matrix to the rest of the processors in order to calculate S[k + 1].
This operation is called a multi-node broadcast operation. The details of the multi-node broadcast
operation for various parallel architectures can be found in [2]. We denote the communication
time of the multi-node broadcast operation of a single matrix element by B. Since n2=p matrix
elements are being broadcast, the update operation requires O(n2B=p) communication steps. Thus,
a single Newton iteration requires O(n3=p) arithmetic operations with a communication penalty of
O(n2B=p).

3 The Partial Fraction Expansion Algorithm

The most common method for �nding sign(A) is Newton's method which is globally convergent
for matrices with nonzero eigenvalues. This method can also be extended to globally convergent
rational iterations of arbitrary order. Howland [4] derived a closed form formula for a desired degree
rational iteration from the following error relation

sk+1 � 1

sk+1 + 1
=

�
sk � 1

sk + 1

�p

from which we solve for sk+1 as

sk+1 =
(sk + 1)p + (sk � 1)p

(sk + 1)p � (sk � 1)p
.

This is the principal Pad�e iteration of order p [6]. Recently it is noted in [8] that this rational
approximation can be represented as

sk+1 = tanh(p arctanh sk) ,

where

tanh(x) =
ex � e�x

ex + e�x
.

3

Proceedings of the 33rd Annual Allerton Conference on Communication, Control, and Computing
pages 440-446, Urbana, Illinois, October 4-6, 1995

It is also noted in [8] that the above function for even p can be expanded in partial fractions as

tanh(p arctanh(s)) =
s

p

p�1X
i=0

1

sin2((2i+1)�4n) + cos2((2i+1)�4n)s2
(5)

Using the partial fraction expansion of (5), a parallel iteration [12] for the matrix sign function is
obtained. The algorithm starts with S[0] = A, and uses the iteration formula

S[k + 1] = S[k]
pX
i=1

1

p
(�2i I + �2i S

2[k])�1 , (6)

where p is the number of processors and

�i = sin

�
(2i� 1)�

4n

�
and �i = cos

�
(2i� 1)�

4n

�
.

Each step of the parallel sign function iteration starts with parallel squaring of the iteration matrix
S[k] which requires O(n3=p) parallel arithmetic steps. After S2[k] is computed, it is distributed
among the processors, and each processor sequentially computes (�2i I + �2i S

2[k])�1. This step
requires O(n2=p) communication steps and O(n3) arithmetic operations. The summation of (6) is
obtained using a binary tree which requires O(n2 log p) communication and arithmetic steps. After
the sum is obtained, it is multiplied by S[k] in parallel to obtain S[k+1]. This step requires O(n3=p)
arithmetic operations. Thus, a single iteration step requires approximately O(n3=p) arithmetic
operations and O(n2 log p) communication steps.

4 The Parallel Continued Fraction Algorithm

The proposed algorithm is based on parallelization of the continued fraction algorithm [9]. This
algorithm employs the inverse square-root of a matrix using the continued fraction expansion. The
iterative algorithm for computing the inverse of the principal square root of the complex matrix
A 2 Cn�n is stated as follows: "

P1
Q1

#
=

"
I
I

#
,

"
Pj
Qj

#
=

"
I I
A I

"
Pj�1
Qj�1

#
, (7)

lim
j!1

PjQ
�1
j = (

p
A)�1 ,

where Pj ; Qj 2 Cn�n. By replacing the block element A with A2 in the iteration matrix of (7),
we obtain an iterative algorithm for computing the inverse square root of the square of a complex
matrix, which in turn can be used for the computation of the matrix sign function due to the
following de�nition of the matrix sign function:

sign(A) = A(
p
A2)�1 = A�1(

p
A2) .

The continued fraction based matrix sign function algorithm starts with S[0] = A, and uses the
iteration:

S[k + 1] = S[k]

�q
S2[k]

�
�1

.

4

Proceedings of the 33rd Annual Allerton Conference on Communication, Control, and Computing
pages 440-446, Urbana, Illinois, October 4-6, 1995

For each value of k, we compute an approximation for the inverse of the principal square root of
S2[k]. This is achieved by iterating the continued fraction algorithm r times for j = 1; 2; : : : ; r. The
matrix sign function algorithm starts with S[0] = A and iteratively computes the sign function of
A by going through a series of baby-steps and giant-steps, corresponding to the computation of an
r-step approximation for the inverse of the principal square root and the computation of the new
value of S, respectively. Thus, the iteration for the inverse square root is modi�ed for computing
the matrix sign function as follows:

Start: S[0] = A ,

Baby-Step: P1[k] = I ,
Q1[k] = I ,

j = 2; 3; : : : ; r : Pj [k] = Pj�1[k] +Qj�1[k] ,
Qj[k] = S2[k]Pj�1[k] +Qj�1[k] ,

Giant-Step: S[k + 1] = S[k]Pr[k]Q
�1
r [k] .

(8)

A baby-step corresponds to the computation of Pr[k] and Qr[k] using S[k] and the initial values
P1[k] = Q1[k] = I. There are no matrix inversions during this phase. The number of iterations
during the baby-step phase is equal to r, which is predetermined. We start with P1[k] = I and
Q1[k] = I and compute Pj [k] and Qj [k] for j = 2; 3; : : : ; r, using the continued fraction based
iterative algorithm for the inverse square root. A giant-step, on the other hand, corresponds to the
computation of S[k+1], using S[k], Pr[k], and Qr[k]. There is a single matrix inversion during the
giant-step. The number of giant-step iterations is a function of the convergence properties of the
algorithm, the input matrix, as well as the baby-step length r.

� Distribute Pj�1[k] and Qj�1[k] among processors in a column wrapped fashion.

� Compute S2[k] using parallel matrix multiply.

� Compute S2[k]Pj�1[k] using parallel matrix multiply.

� Add the corresponding columns of Pj�1[k] and Qj�1[k] to obtain Pj[k].

� Add S2[k]Pj�1[k] and Qj�1[k] in a similar fashion to obtain Qj[k].

� Solve in parallel for S[k + 1] in Qr[k]S[k + 1] = S[k]Pr[k].

The proposed algorithm achieves data parallelism by distributing the matrices among the proces-
sors and obtaining the LU decomposition and matrix products in parallel. With p < n processors,
computing S2[k] and S2[k]Pj�1[k] and updating the new iterate on each processor requires O(n3=p)
arithmetic steps and O(n2B=p) communication steps, where B is the communication overhead of a
multi-node broadcast operation. Adding the corresponding rectangular arrays Pj�1[k], S

2[k]Pj�1[k]
and Qj�1[k] to obtain Pj [k] and Qj [k] requires n

2=p arithmetic steps and O(n2B=p) communication
steps. Finally parallel solution of the linear system requires O(n3=p) parallel arithmetic operations.
Therefore each giant-step requires approximately O(rn3=p) arithmetic steps and O(rn2B=p) com-
munication steps where r is the baby-step length.

5 Implementation Results and Conclusions

We have implemented these three parallel matrix sign function algorithms on an 8-processor par-
tition of a Meiko CS-2 multiprocessor, in which each node is a Sparc processor equipped with 256

5

Proceedings of the 33rd Annual Allerton Conference on Communication, Control, and Computing
pages 440-446, Urbana, Illinois, October 4-6, 1995

MBytes of memory. The algorithms are implemented using the PVM software. In our experiments,
we have computed the sign functions of matrices of dimensions ranging from 128 to 1024. The
matrices are generated randomly with geometrically distributed eigenvalues. In Table 1, we give
the parallel times for the three algorithms as a function of time for p = 2; 4, and 8.

Table 1: The parallel times for the algorithms (in seconds).

p = 2 p = 4 p = 8
Size N PFE CF N PFE CF N PFE CF

128 0.221 0.070 0.052 0.184 0.058 0.043 0.153 0.047 0.037
256 0.504 0.186 0.161 0.387 0.143 0.124 0.297 0.109 0.094
384 0.985 0.422 0.312 0.703 0.301 0.230 0.502 0.212 0.168
512 1.463 0.700 0.601 0.975 0.464 0.401 0.650 0.314 0.273
640 2.242 1.192 1.024 1.401 0.745 0.640 0.875 0.481 0.407
768 3.924 2.086 1.792 2.451 1.301 1.120 1.529 0.843 0.712
896 7.065 3.754 3.224 4.420 2.340 2.017 2.750 1.517 1.288
1024 12.993 6.941 5.967 8.146 4.325 3.729 5.100 2.807 2.379

The number of iteration steps for the the partial fraction algorithm is a function of the number
of processors (the order of the summation) and the size of the matrix. For the continued fraction
algorithm the number of the giant-steps depends on r. A thorough analysis of the dependency of
the number of giant-steps on r is given in [9]. For this implementation we selected r to be 4. In
Table 2, we tabulate the number of iterations for the algorithms as a function of the matrix size
and the number processors.

Table 2: The number of iterations for the algorithms.

p = 2 p = 4 p = 8
Size N PFE CF N PFE CF N PFE CF

128 13 9 8 13 6 8 13 5 8
256 13 9 7 13 6 7 13 5 7
384 13 9 7 13 6 7 13 5 7
512 14 9 7 14 6 7 14 5 7
640 14 8 7 14 6 7 14 4 7
768 14 8 7 14 5 7 14 4 7
896 14 8 7 14 5 7 14 4 7
1024 15 7 7 15 5 7 15 4 7

Our implementation results show that Newton's method is the slowest of all three algorithms,
mainly because of the high number of iterations. For example, for matrix size 1024, Newton's
method requires nearly twice the time required by the partial fraction expansion algorithm. Fur-
thermore, comparing the other two algorithms to one another, we conclude that the continued
fraction algorithm is slightly faster than the partial fraction expansion algorithm. Although the
partial fraction algorithm requires the fewest number of iterations for p = 4 or 8, its total time
is slightly larger than the continued fraction algorithm, This is mainly due to the fact that the
partial fraction expansion algorithm requires the summation of n3 matrix elements distributed over
p processors, introducing a communication penalty of O(n3 log p) at each step which considerably
lengthens the total time.

6

Proceedings of the 33rd Annual Allerton Conference on Communication, Control, and Computing
pages 440-446, Urbana, Illinois, October 4-6, 1995

References

[1] N. Akar and K. Sohraby. An invariant subspace approach in M/G/1 and G/M/1 type Markov
chains. Manuscript, University of Missouri { Kansas City, March 1995.

[2] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation, Numerical Methods.
Englewood Cli�s, NJ: Prentice-Hall, 1989.

[3] J. D. Gardiner and A. J. Laub. Parallel algorithms for algebraic Riccati equations. Interna-
tional Journal of Control, 44(6):1317{1333, December 1991.

[4] J. Howland. The sign matrix and the separation of eigenvalues. Linear Algebra and its Appli-

cations, 49:221{232, 1983.

[5] C. Kenney and A. J. Laub. Polar decomposition and matrix sign function condition estimates.
SIAM Journal on Scienti�c and Statistical Computing, 12(3):488{504, 1991.

[6] C. Kenney and A. J. Laub. Rational iterative methods for the matrix sign function. SIAM

Journal on Matrix Analysis and Applications, 12(2):273{291, April 1991.

[7] C. Kenney and A. J. Laub. On scaling Newton's method for polar decomposition and the
matrix sign function. SIAM Journal on Matrix Analysis and Applications, 13(3):688{706,
July 1992.

[8] C. Kenney and A. J. Laub. A hyperbolic tangent identity and geometry of Pad�e sign function
iterations. Numerical Algorithms, 7:111{128, 1994.

[9] C� . K. Ko�c, B. Bakkalo�glu, and L. S. Shieh. Computation of the matrix sign function using
continued fraction expansion. IEEE Transactions on Automatic Control, 39(8):1644{1647,
August 1994.

[10] A. J. Laub. Invariant subspace methods for the numerical solution of Riccati equations. In
S. Bittanti, A. J. Laub, and J. C. Willems, editors, The Riccati Equation, pages 163{196. New
York, NY: Springer-Verlag, 1991.

[11] R. L. Mattheys. Stability analysis via the extended matrix sign function. IEE Proceedings:

Control Theory and Applications, 125(3):1057{1078, 1978.

[12] P. Pandey, C. Kenney, and A. J. Laub. A parallel algorithm for the matrix sign function.
International Journal of High-Speed Computing, 2(2):181{191, 1990.

[13] J. D. Roberts. Linear model reduction and solution of the algebraic Riccati equation by use
of the sign function. International Journal of Control, 32(4):677{687, 1980.

[14] L. S. Shieh, H. M. Dib, and R. E. Yates. Separation of matrix eigenvalues and structural
decomposition of large-scale systems. IEE Proceedings: Control Theory and Applications,
133(2):90{96, 1986.

7

