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Abstract

The matrix n-sector function is a generalization of the matrix sign function, and can be used

to determine the number of eigenvalues of a matrix in a speci�c sector of the complex plane, and

to extract the eigenpairs belonging to this sector without explicitly computing the eigenvalues. It

is known that Newton's method, which can be used for computing the matrix sign function, is not

globally convergent for the matrix sector function. The only existing algorithm for computing the

matrix sector function is based on the continued fraction expansion approximation to the principal

nth root of an arbitrary complex matrix. In this paper, we introduce a new algorithm, based on

Halley's generalized iteration formula for solving nonlinear equations. It is shown that the iteration

has good error propagation properties and high accuracy. Finally, we give two application examples,

and summarize the results of our numerical experiments comparing Newton's, the continued fraction,

and Halley's method.

Technical Area: Systems, Computational methods.

Keywords: Matrix sign function, matrix sector function, eigenvalue computation, Newton's
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1 Introduction

Fast computation of a restricted subset of eigenpairs of time varying matrices is an important topic
in real time signal processing and control applications. Approximation of a matrix by another of
lower rank, or model reduction, is desired in many applications, e.g., in systems theory [25], data
analysis, pattern recognition, spectral analysis, radar, sonar, and geophysics [7]. Fast sequential
and parallel for computing the eigenvalues and eigenvectors of unsymmetric matrices have been
developed [5, 12, 13, 15]. These algorithms can be used to compute all the eigenvalues of the matrix
and then to extract the speci�ed subset of the eigenvalue and eigenvector pairs. However, for these
applications, methods which compute only a restricted subset of eigenpairs without resorting to
computationally expensive eigenpair methods would be more useful and e�cient. The matrix sign
function and the matrix n-sector function can e�ciently and reliably be used for this purpose [3, 2].
By obtaining the sector function of a matrix, we can easily determine the number of eigenvalues of a
matrix in a speci�c sector of the complex plane, and extract the eigenpairs belonging to this sector
without explicitly computing the eigenvalues and eigenvectors. By shifting the original matrix,
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or applying bilinear transformations, we can extend the sectors to various shapes and geometries.
The matrix sign and sector function methods also have certain properties which make them more
advantageous, e.g., complex arithmetic is avoided for matrices with real entries.

The matrix sign function is a particular case of the matrix n-sector function for n = 2. Sequential
and parallel algorithms for the matrix sign function have been developed [21, 16, 17, 11, 20], and
its applications systems theory and matrix analysis have been established [23, 24, 6, 11]. However,
the matrix sector function is a fairly new research topic. To the best of our knowledge, the only
existing algorithm for computing the sector function of arbitrary complex matrices is the one given
in [27]. Let a matrix A 2 Cm�m have eigenspectrum �(A) = f�i; i = 1; : : : ;mg where �i 6= 0
and arg(�i) 6= �. The principal nth root of A, denoted as n

p
A 2 Cm�m, is the matrix satisfying

( n
p
A)n = A and arg(�( n

p
A)) 2 (��=n; �=n). It is known that Newton's method can be used to

compute the principal nth root of a positive de�nite matrix [14]. However, it has been pointed out
in [26, 27] that Newton's method fails to give the principal nth root of a general complex matrix,
thus, cannot be used for computing the matrix sector function.

In this paper, a fast and highly accurate algorithm is proposed. We �rst give the de�nitions of
the matrix sector function and point out its applications. Then we introduce Halley's method, and
give a perturbation analysis which shows that the �rst order errors in one step do not propagate to
the next step. Finally, two application examples are given, and numerical experiments comparing
Newton's, the continued fraction, and Halley's methods are summarized.

2 De�nition of Matrix Sector Functions

The n-sector function of a scalar (matrix) is based on the principal nth root of the scalar (matrix).
We begin with the de�nition of the sector function for a scalar. Let � 2 C be expressed by � = �ej�,
where � > 0, j =

p�1, � 2 [0; 2�), and � 6= 2�(k+ 1
2)=n for k 2 [0; n�1]. Assume that � lies within

the sector �k in C de�ned as the region bounded by the sector angles 2�(k� 1
2)=n and 2�(k+ 1

2)=n,
where k 2 [0; n� 1]. Then the scalar n-sector function of � is de�ned as

Sn(�) = ej2�k=n .

Let n
p
� be the principal nth root of � 2 C. As shown in [27], the scalar sector function of � can be

expressed as

Sn(�) =
�

n
p
�n

,

where � 6= 0 and arg(�) 6= 2�(k+ 1
2 )=n for k 2 [0; n�1]. Therefore, the scalar sector function maps

a scalar in a speci�c sector to the bisector of the sector angles on the unit circle. The scalar sign
function is a particular case of the n-sector function for n = 2, i.e., the complex plane is partitioned
into 2 sectors: Complex numbers with positive and negative real parts are mapped to +1 and �1,
respectively. We also de�ne the qth n-sector function of the scalar � for q 2 [0; n� 1], denoted by
Sn;q(�), as the transformation that takes � to 1 if � belongs to �q and to zero otherwise:

Sn;q(�) =

(
1 if � 2 �q ,
0 otherwise.

We can extend these de�nitions to complex square matrices as follows. Let A 2 Cm�m and �(A) =
f�i ; i = 1; : : : ;mg be its spectrum with not necessarily distinct eigenvalues �i 6= 0 and arg(�i) 6=
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2�(k+ 1
2)=n for k 2 [0; n�1]. Let M 2 Cm�m be the modal matrix that takes A to its Jordan form

as
A =M [J1 � J2 � � � � � Jk]M

�1 ,

where Ji 2 Cri�ri are the Jordan blocks corresponding to the ith eigenvalue with geometric multi-
plicity ri, such that

Pk
i=1 ri = m. Applying the matrix function de�nition of Giorgi [22], we can

de�ne the matrix sector function of A as

Sn(A) = A
�

n
p
An
�
�1

= M

�
J1
�

n

q
Jn1

��1
� � � � � Jk

�
n

q
Jnk

��1�
M�1 ,

where

Ji
�

n

q
Jni

��1
= Sn(�i)Iri .

Therefore, the de�nition of the sector function of a matrix becomes

Sn(A) =M

"
mM
i=1

Sn(�i)

#
M�1 .

Following the de�nition of the scalar sector function, we see that the matrix sector function maps
the eigenvalues of a given matrix to the bisector of the sector angles of the corresponding region
onto the unit circle while preserving the eigenvectors. Similarly, the matrix qth n-sector function
of A, denoted by Sn;q(A), is de�ned as

Sn;q(A) =M

"
mM
i=1

Sn;q(�i)

#
M�1 ,

where Sn;q(�) is the scalar qth n-sector function of �. The matrix qth n-sector function of A maps
the eigenvalues of A in the sector �q to 1, and the remaining eigenvalues are mapped to zero. It
can be easily proven (see, Theorem 4.2 in [26]) that the matrix qth n-sector function of A is equal
to

Sn;q(A) =
1

n

nX
i=1

h
Sn(A) e

�j2�q=n
ii�1

for q 2 [0; n� 1], where Sn(A) is the n-sector function of A.

3 Applications of Matrix Sector Functions

The matrix sector function can be utilized to block diagonalize a given matrix, without explicitly
computing the eigenvalues and the corresponding eigenvectors. For A 2 Cm�p, we de�ne ind[A] as
the set of linearly independent column vectors of A. Let �i denote the linearly independent column
vectors of Sn;q(A) for A 2 Cm�m with nonzero eigenvalues, i.e.,

�i = ind [Sn;q(A)] 2 Cm�mi

for q 2 [0; n� 1], i 2 [1; k], and m =
Pk
i=1mi. The block modal matrix M , de�ned as

M = [�1; �2; : : : ; �k] 2 Cm�m ,
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can be used to block diagonalize the matrix A as

D =M�1AM = diag[A1; A2; : : : ; Ak] ,

where the block elements correspond to the eigenvalues in the speci�ed sector of the complex plane.
This strategy can be used to decompose a system into several smaller subsystems with similar
transient characteristics. The location of the poles with respect to the sector angles determines the
natural frequencies and the damping ratio of the system [1]. Decoupling with respect to the given
sectors would enable us to obtain a physical realization which is more precise and stable. This
analysis can be performed from both state-space and matrix-fraction description points of view.
Let a q-input, p-output system be described by

_x(t) = Ax(t) +Bu(t) ,

y(t) = Cx(t) +Du(t) ,

where x(t) 2 Cm�1, u(t) 2 Cq�1, and y(t) 2 Cp�1. Assuming the system is observable and control-
lable, we can de�ne the left and right matrix fraction description of the system as

Hl(s) = C(sI �A)�1B +D = D�1l (s)Nl(s) +D ,

Hr(s) = C(sI �A)�1B +D = N�1
r (s)Dr(s) +D ,

where Nr(s), Dr(s), Nl(s), and Dl(s) are polynomial matrices. Let M be the block modal matrix
which block diagonalizes A, obtained using the matrix sector functions Sn;q(A). We have

Ad = M�1AM = diag[Â1; Â2; : : : ; Âk] for Âi 2 Cmi�mi ,

Bd = M�1B = [B̂T
1 ; B̂

T
2 ; : : : ; B̂

T
k ]
T for B̂i 2 Cmi�q ,

Cd = CM = [Ĉ1; Ĉ2; : : : ; Ĉk] for Ĉi 2 Cp�mi .

Thus, the system can be block decomposed into k subsystems as

_xd(t) = Adxd(t) +Bdu(t) ,

y(t) = Cdxd(t) +Du(t) ,

where x(t) =Mxd(t). The input/output relationship after the decomposition is given as

Y (s) = (Cd(sI �Ad)
�1Bd +D)U(s) .

where the ith element of the transfer function matrix contains the mi eigenvalues of the sector �i.

4 Halley's Method for the Matrix Sector Function

It has been shown that Halley's generalized iteration formula for solving nonlinear equations is
of third order, and its error-cubing variation converges faster than Newton's method [10, 9, 8, 4].
Halley's method can be derived by applying Newton's method to the function

g(s) =
f(s)p
f 0(s)

,
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which is written as

sk+1 = sk � f(sk)

f 0(sk)� f 00(sk)f(sk)
2f 0(sk)

. (1)

We start with an alternative de�nition of the scalar sector function as the solution of the following
equation

f(s) = sn � 1 = 0 .

Solution of this equation with Halley iteration becomes

sk+1 = sk � 2sk(s
n
k � 1)

(n+ 1)snk + (n� 1)
,

which reduces to

sk+1 = sk
(n� 1)snk + (n+ 1)

(n+ 1)snk + (n� 1)
.

This iteration produces an order [1; 1] rational Pad�e approximant to

f(s) =
s

n
p
1� z

,

where z = 1� sn. In the matrix case, f(Sn) can be de�ned as

f(Sn) = Snn(A)� I = 0 .

Let Sn[k] stand for the value of Sn(A) at step k. Applying the iteration of Equation (1) to the
above expression, we obtain Halley's method for matrix sector function as

Sn[0] = A ,

Sn[k + 1] = Sn[k]� ((n� 1)Snn [k] + (n+ 1)I)� ((n+ 1)Snn [k]� (n� 1)I)�1 ,
limk!1 Sn[k] = Sn(A) .

9>=
>; (2)

Now we give a convergence analysis of Halley's method by checking the location of the eigenvalues
of Sn(A) as the algorithm iterates starting from k = 0, i.e., Sn[0] = A. We assume that Sn[k] has
an eigenvalue �k in the sector �q at the kth step of the iteration, which can be expressed as

�k = �ke
j( k+2�q=n) ,

where �k = j�kj, q 2 [0; n� 1], and j kj < �=n. Here, �k+1 can be given as

�k+1 = �ke
j( k+2�q=n)

(n� 1)�nke
jn k + (n+ 1)

(n+ 1)�nke
jn k + (n� 1)

.

We expect
lim
k!1

�k = 1 and lim
k!1

 k = 0 .

Let limk!1 �k exist and be �nite. Denoting this limit by x, from Equation (2) we obtain

x = x
(n� 1)xn + (n+ 1)

(n+ 1)xn + (n� 1)

which reduces to
xn+1 � x = 0 .
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Assuming x 6= 0, we �nd the solution of the limit equation as x = n
p
1, i.e., an nth root of unity.

Let z be a complex number in the sector �0 which contains the �rst real root of unity, +1. For
the n sector plane the following inequality should hold:

���� (z � 1)

(z � zi)

���� < 1 (3)

for 1 � i � n � 1, where zi = ej(2�i)=n, i.e., one of the nth roots of unity. In order to guarantee
that the consecutive iterates does not pass the sector boundaries, this inequality should hold true
at each step of the iteration. Let sk be a scalar at the kth step of the iteration, then the following
equality should also be satis�ed for all k [19].

sk+1 � Sn(sk+1) = sk+1 � Sn(sk) .

The relationship between two consecutive iterates is obtained as

(sk+1 � 1)

(sk+1 � z)
=

(sk � 1)3

(sk � z)3

0
@

Pn�1
j=1

�Pj
i=1(n� (2i � 1))sn�j�1k

�
Pn�1
j=1

�Pj
i=1(n� (2i� 1))sn�j�1k zj�1

�
1
A ,

where z is one of the nth roots of unity. The �rst part of right hand side satis�es the convergence
property (3), but the entire right hand side contains a rational term which may force the ratio to
be greater than 1 for some sk. In this case the iterate changes sectors and the iteration converges to
an incorrect value. The following example was provided by Kenney and Laub [18]: Consider z1 =
e2�=3j , i.e., the second cuberoot of unity. Taking s0 = �z1 + 0:001 = 0:5010 � 0:8660j (which is in
the sector �0) as our initial point the �rst step of the Halley iteration yields s1 = �0:4920+0:8660j,
and eventually the iteration converges to z1 rather than to 1. Such inaccuracies mostly occur for
points on or near the sector boundaries.

5 Perturbation Analysis

In this section, we analyze Halley's iteration for matrix sector functions when the iterates are
subject to perturbations from rounding errors at a given step k. Let ~Sn[k] = Sn[k] + E[k], where
E[k] is the error at step k. The perturbed value of Sn[k + 1] can be written as

~Sn[k + 1] = (Sn[k] +E[k])� ((n� 1)(Snn [k] + F [k]) + (n+ 1)I)�
((n+ 1)(Snn [k] + F [k]) + (n� 1)I)�1 ,

where
F [k] = E[k]Sn�1n [k] + Sn[k]E[k]S

n�2
n [k] + � � � + Sn�1n E[k] .

Here, we have used the power expansion

(A+E)n �= An +EAn�1 +AEAn�2 +A2EAn�3 + � � �+An�1E

by ignoring the terms involving more than one error term. Assuming

k(n+ 1)Snn [k] + (n� 1)Ik > k(n+ 1)F [k]k ,

6
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we utilize the perturbation formula in [28] and obtain

(A+E)�1 = A�1 �A�1EA�1 +O(kEk2) .

Let

N [k] = (n� 1)Snn [k] + (n+ 1)I ,

D[k] = (n+ 1)Snn [k] + (n� 1)I .

Ignoring error terms of degree two or more, we obtain

~Sn[k + 1] = Sn[k]N [k]D�1[k]� (n+ 1)Sn[k]N [k]D�1[k]F [k]D�1[k] +

(n� 1)Sn[k]F [k]D
�1[k] +E[k]N [k]D�1[k] .

This gives the error expression as

E[k + 1] = ~Sn[k + 1]� Sn[k + 1]

= E[k]N [k]D�1[k] + (n� 1)Sn[k]F [k]D
�1[k]� (n+ 1)Sn[k + 1]F [k]D�1[k] .

Let M be the modal matrix of Sn[k] and Sn[k + 1] such that

D[k] = M�1Sn[k]M = diag(�1[k]; : : : ; �m[k]) ,
D[k + 1] = M�1Sn[k + 1]M = diag(�1[k + 1]; : : : ; �m[k + 1]) .

Let Ê[k] =M�1E[k]M and F̂ [k] =M�1F [k]M , then F̂ [k] can be written elementwise as

F̂ij [k] =

 
n�1X
l=0

�li[k]�
n�1�l
j [k]

!
Êij[k] . (4)

The matrix sector function identity suggests that

lim
k!1

Snn [k] = I ,

thus, the elementwise error iteration becomes

Êij [k + 1] = Êij [k] +
(n� 1)

2n
�i[k]F̂ij [k]� (n+ 1)

2n
�i[k + 1]F̂ij [k] ,

where limk!1 �i[k] = ej2�q=n. Therefore, the error expression becomes

Êij [k + 1] = Êij [k]� 1

n
ej2�q=nF̂ij [k] . (5)

We have two cases to consider:

1. If �i and �j are in di�erent sectors, Equation (4) gives F̂ij [k] = 0, and the error expression
(5) becomes

Êij[k + 1] = Êij [k] ,

i.e., the error in the kth step is passed to, but not magni�ed in the (k + 1)st step.

7
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2. If �i and �j are in the same sector, Equation (4) gives

F̂ij [k] = nej2�q(n�1)=nÊij [k] .

Thus, the error expression (5) becomes

Êij [k + 1] = 0 ,

i.e., no �rst order error is propagated to the (k + 1)st step.

Thus, we conclude that the �rst order errors in one step either have limited e�ect on the next step,
or do not propagate to the next step at all.

6 Application Examples

Example 1

Here we analyze the state space matrix for a jet transport during cruise ight, taken from Matlab
jetdemo (Version 4.1). The matrix A is given as

A =

2
6664
�0:0558 �0:9968 0:0802 0:0415
0:5980 �0:1150 �0:0318 0

�3:0500 0:3880 �0:4650 0
0 0:0805 1:0000 0

3
7775 .

In Table 1 we give the eigenvalues and their damping coe�cients, natural frequencies, and locations
in the complex plane.

Table 1. The eigenvalues of A and their properties.

Newton Continued Fraction Halley
� k �(S4[k]) k �(S4[k]) k �(S4[k])

1 35 �j 20 1 17 1
10 47 �1 22 1;�j 20 1
102 49 1;�j 26 �j 23 1
103 54 �j 29 1;�j 25 1
104 65 �j 32 �j 28 1
105 71 1 35 �j 31 1

Terminating the iteration when kSn[k] � Sn[k � 1]k � 10�6 with a relative machine precision of
� = 2:2204 � 10�16, we obtain the S4(A) as

S4(A) =

2
6664
�0:0445 �1:1338 0:0653 0:0401
0:6226 �0:3699 �0:0916 �0:0306

�3:8290 �0:6083 �0:7567 0:0529
1:2161 �4:3353 0:3667 �0:8289

3
7775 .
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Since there are no eigenvalues in the �rst sector S4;0(A) is computed as a zero matrix. The other
three partitioned matrix 4-sector functions, i.e., S4;1(A); S4;2(A); S4;3(A) are obtained as follows:

S4;1(A) =

2
6664

0:4763 � 0:0014j �0:0640 + 0:5029j �0:0166 � 0:0492j �0:0008 � 0:0209j
�0:0139 � 0:3252j 0:3451 + 0:0301j �0:0332 + 0:0127j �0:0142 + 0:0011j
�0:6883 + 1:2262j �1:1993 � 0:8951j 0:1506 + 0:0289j 0:0547 + 0:0283j
1:2914 + 0:6834j �0:8989 + 1:2688j 0:0262 � 0:1572j 0:0280 � 0:0576j

3
7775 ;

S4;2(A) =

2
6664

0:0474 0:1281 0:0331 0:0016
0:0278 0:3098 0:0663 0:0284
1:3766 2:3986 0:6988 �0:1095

�2:5828 1:7977 �0:0524 0:9441

3
7775 ,

S4;3(A) = S�4;1(A) .

We can extract the linearly independent column vectors by using the orthogonal projection
algorithm to obtain the transformation matrix M as

M =

2
6664

0:4763 � 0:0014j 0:4763 + 0:0014j 0:0474 0:1281
�0:0139 � 0:3252j �0:0139 + 0:3252j 0:0278 0:3098
�0:6883 + 1:2262j �0:6883 � 1:2262j 1:3766 2:3986
1:2914 + 0:6834j 1:2914 � 0:6834j �2:5828 1:7977

3
7775 ,

which transforms the system matrix to three subblocks as

D =M�1AM =

2
6664
�0:0329 + 0:9467j 0 0 0

0 �0:0329 � 0:9467j 0 0
0 0 �0:5419 �0:9578
0 0 �0:0116 �0:0280

3
7775 .

The matrix D contains subblocks belonging to four sectors on the 4-sector plane. In fact, the
�rst two diagonal elements are the complex eigenvalues of matrix A. The last block gives the
real eigenvalues in �2. We have calculated the relative error in the computed solution Sc with
respect to the solution S obtained by explicitly computing the eigenvalues of the matrix, i.e.,
kSc � Sk=kSk, for the methods mentioned. In our experiments, Halley's method gave an error
of 1:3965 � 10�15 upon termination. The continued fraction algorithm converged with a slightly
larger error of 1:7294� 10�15, and Newton's method converged to an incorrect value. The absolute
maximum o�-diagonal element of matrix D is found as 5:72 � 10�5.

Example 2

In this example we show how the impulse response of a system can be decomposed into its oscillatory
and damped exponential components by utilizing the matrix sector functions. We consider a linear
time invariant system, represented by the matrices

A =

2
666664

�2:7798 14:4361 �11:9801 �28:2392 27:3195
�5:1596 28:2055 �15:6936 �52:2117 46:9724
3:4870 �5:8394 �9:6580 7:5337 0:1969
7:2000 �20:0000 �2:2000 27:8000 �20:0000
12:3290 �41:4465 3:2807 65:0112 �50:2677

3
777775 ,
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and

B =
h
12 6 12 13 16

iT
, C =

h
0:1710 �4:7202 4:8860 9:1554 �9:3990

i
.

The eigenvalues of the open-loop system are �(A) = f�1� 3:87j;�1:5;�1:6� 1:2jg, therefore, the
impulse response has a damped exponential and an oscillatory component. Computing S4(A) en-
ables us to decompose the system into two components A1 2 C2�2 and A2 2 C3�3, with eigenvalues
�(A1) = f�1 � 3:87jg and �(A2) = f�1:5;�1:6 � 1:2jg. On the 4-sector plane, the eigenvalues
of A1 lie in �1 and �3, where the damping ratio � is less than 0.707, and the eigenvalues of A2

lies in �2, where � > 0:707. Figure 1 shows the total and decomposed system impulse responses,
in which the solid and dashed lines correspond to the impulse response of subsystems A1 and A2,
respectively.

Figure 1: The total and decomposed system impulse responses.
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7 Numerical Experiments

In this section, we analyze the accuracy of the three algorithms, namely, Newton's method, the
continued fraction method, and Halley's method, according to the location of the eigenvalues with
respect to the sector angles. We start with a diagonal matrix

D = diag(7 + 7j; 7 � 7j; 70 + 70j; 70 � 70j) ,

whose eigenvalues are on the sector angles ��=4 of the 4-sector plane. We shift the real part of
this matrix by 1=� for � > 0 to obtain D(�) as

D(�) = diag((7 +
1

�
) + 7j; (7 +

1

�
)� 7j; (70 +

1

�
) + 70j; (70 +

1

�
)� 70j) .

This changes the location of the eigenvalues of this matrix from the sector angles to �0 on the
4-sector plane. After this small shift, we form the following upper triangular matrix

A(�) = D(�) + T

by adding a strictly upper triangular matrix T , with elements uniformly distributed over the interval
[0; 1]. Now, an accurate sector function algorithm should produce S4(A(�)) with all eigenvalues
equal to 1, i.e.,

�(S4(A(�))) = f1; 1; 1; 1g for all � > 0 .
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We have applied Newton's, the continued fraction, and Halley's methods to compute S4(A(�)) for
several values of �. The results are summarized in Table 2.

Table 2. The eigenvalues of S4(A) after the convergence.

Newton Continued Fraction Halley
� k �(S4[k]) k �(S4[k]) k �(S4[k])

1 35 �j 20 1 17 1
10 47 �1 22 1;�j 20 1
102 49 1;�j 26 �j 23 1
103 54 �j 29 1;�j 25 1
104 65 �j 32 �j 28 1
105 71 1 35 �j 31 1

Our experiments shows that only Halley's iteration converges accurately for all �. Furthermore,
Halley's method computes S4(A) using fewer iterations than both Newton's and the continued
fraction methods. We also note that the iterative matrix sector algorithm may use more oating-
point operations than the QR algorithm, but it is easier to parallelize and contains simple matrix
operations such as LU decomposition and matrix multiplication.

8 Conclusion

We have described an iterative algorithm for the computation of the matrix sector function, which
is based on the solution of a nonlinear equation using Halley's method. The algorithm is fast and
numerically stable, and gives accurate results even for matrices with ill-conditioned eigenstructures.
We have discussed applications of matrix sector functions, and provided some examples supporting
these applications. We are currently investigating the e�ects of scaling on the speed of convergence,
and developing e�cient methods for the computation of partitioned matrix sector functions from
the matrix sector function.
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