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Abstract

The well-known binary method computes C = ME (mod N) using an av-

erage number of 1:5(n� 1) multiplications, where n is the number of bits in the

binary expansion of E. When the exponent is recoded using the canonical bit

recoding technique then the average number of multiplications can be reduced

to 1:33(n � 1). We show that a further reduction is achieved if the bits of the
exponent are scanned at d > 1 bits at a time: for n = 210, for example, the av-

erage number of multiplications becomes 1:212(n� 1) with d = 5. Furthermore,

given any � > 0, the computation can be done using an average of (1 + �)(n� 1)

multiplications for large n by taking d = d1
�
e.

1 Binary and Recoded Binary Methods

The binary method (the square and multiply method) computes

C = ME (mod N) (1)

using n � 1 squarings and as many multiplications as the number of nonzero bits in
the binary expansion of the exponent, where n = 1 + blog2Ec [3]. It is clear that
n � 1 is a lower bound for the number of squaring operations required. However, it
is possible to reduce the number of consequent multiplications using a recoding of the
the exponent [10]. Recoding techniques (Booth recoding, bit-pair recoding, etc.) for
sparse representations of binary numbers have been e�ectively used in multiplication
algorithms [2, 9]. For example, the original Booth recoding technique [1] scans the bits
of the multiplier one bit at a time, and adds or subtracts the multiplicand to or from
the partial product, depending on the value of the current bit and the previous bit. The
modi�ed versions of the Booth algorithm scans the bits of the multiplier two bits at a
time [6] or three bits at a time [9]. These techniques are equivalent in the sense that a
signed-digit representation which is based on the identity 2k � 1 = 2k�1 + � � �+21+ 20

is used to collapse blocks of 1's appearing in a binary representation. Thus in a signed-
digit number with radix 2, three symbols f�a; 0; ag are allowed for the digit set, in which
a represents 1 and �a represents �1.
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A minimal signed-digit vector D = (Dn�1Dn�2 � � �D1D0)2 that contains no adjacent
nonzero digits (i.e. DiDi�1 = 0; 0 < i < n) is called a canonical signed-digit vector

[7, 2]. If the binary expansion of E is viewed as padded with an initial zero, then it can
be proved that there exists a unique canonical signed-digit vector for E. An algorithm
for this recoding is described in [7, 2].

The bit recoding techniques applied to E can be used for the modular exponentia-
tion problem provided thatM�1 (mod N) is supplied along withM [10]. Throughout
this paper, we will ignore the preprocessing time required for the computation of M�1

(mod N) by the well known extended Euclidean algorithm [3, 5].

2 The m-ary Method

The binary method can be generalized to the m-ary method which scans the digits of E
expressed in radix m [3]. We restrict our attention to the case when m = 2d. Let E =
(En�1En�2 � � �E1E0)2 be the binary expansion of the exponent. This representation of
E is partitioned into k blocks of length d each, for kd = n (if d does not divide n, the
exponent is padded with at most d� 1 zeros). Now, de�ne

F (i) = (Eid+d�1Eid+d�2 � � �Eid)2 =
d�1X
r=0

Eid+r2
r . (2)

Note that 0 � F (i) � 2d � 1 and E =
Pk�1

i=0 F
(i)2id. In the m-ary method, �rst the

values of M j (mod N) for j = 2; 3; : : : ; 2d � 1 are computed. Then the bits of E are
scanned d bits at a time from the most signi�cant to the least signi�cant. At each step
the partial result is raised to the 2d power and multiplied with MF (i)

where F (i) is the
value of the current bit section.

m-ary method

Input: M;N;E; n; d where n = 1 + blog2Ec and n = kd for k � 1.

Output: C =ME (mod N).

Step 1. Compute M j (mod N) for j = 2; 3; : : : ; 2d � 1.

Step 2. Set C = MF (k�1)
(mod N) and for i = k � 2; k � 3; : : : ; 1; 0 compute

C = C2d (mod N) ;

C = C �MF (i)

(mod N) if F (i) 6= 0 :

Theorem 1 The m-ary method requires

T (n; d) = n+
�
n

d
� 1

��
1�

1

2d

�
+ 2d � d� 2 (3)

multiplications on the average.
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Proof Step 1 of the m-ary method requires 2d � 2 multiplications regardless of the
value of the exponent. The number of squaring operations in Step 2 is equal to (k�1)d.
Multiplications in Step 2 are performed for nonzero values of F (i). Since m � 1 out
of m values of F (i) are nonzero, the average number of multiplications required is
(k � 1)

�
m�1
m

�
. Substituting m = 2d and n = kd, we obtain the stated result. 2

The average number of multiplications for the binary method can be found simply
by substituting d = 1 in (3). Thus

T (n; 1) = n+ (n� 1)
�
1�

1

2

�
+ 2� 1� 2 =

3

2
(n� 1) .

The optimal value d� of d which minimizes the average number of multiplications
required by the m-ary method can be shown to be d� = O(logn). Exact values of d�

can be obtained by enumeration [4].

3 The Recoded m-ary Method

Next, we consider the recoded version of the m-ary method, in which the partitioning
that determines F (i) in (2) is applied to the canonical signed-digit vector of E instead
of the its binary expansion.

Recoded m-ary method

Input: M;M�1; N; E; n; d where n = 1 + blog2Ec and n = kd for k � 1.

Output: C =ME (mod N).

Step 1. Compute the canonical signed-digit recoding of the exponent E using Re-
itwiesner's algorithm [7, 2]. The resulting exponent D is the minimal signed-digit
vector.

Step 2. Compute MF (i)
(mod N) for all possible F (i). Note that here F (i) is a bit-

section of the minimally recoded exponent D. The length of F (i) is equal to
d.

Step 3. Set C = MF (k�1)
(mod N) and for i = k � 2; k � 3; : : : ; 1; 0 compute

C = C2d (mod N) ;

C = C �MF (i)

(mod N) if F (i) 6= 0 :

Our point of departure for the analysis of the recoded m-ary method is the study
of the collection of all canonical signed-digit vectors. Equivalently, we denote by L the
formal language of all words w over the alphabet f�a; 0; ag in which none of the patterns

aa; a�a; �aa; �a�a
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appears. Thus the words w of length d in L correspond to possible bit-sections F (i) of
the recoded binary expansion of E. For w 2 L, let jwj and jwj0 denote the length of
w and the number of occurrences of the letter 0 in w, respectively. Suppose �n is the
total number of words of length n in L, and �n is the total number of occurrences of
the letter 0 over all words of length n in L. In other words

�n =
X

w 2 L
jwj = n

jwj0 :

Theorem 2 We have

�n =
1

3
[2n+2 + (�1)n+1 ] and �n =

(24n+ 56)2n + (8� 3n)(�1)n

27
:

In particular,

lim
n!1

�n

n�n
=

2

3
: (4)

Proof By considering the words in L according to their �rst letter, it is easy to see
that L satis�es the relation

L = 1 + a + �a+ a0L+ �a0L+ 0L ; (5)

where 1 denotes the empty word and + denotes disjoint union. Consider the generating
function

fL(t; x) =
X
w2L

tjwjxjwj0 :

It follows from (5) that fL satis�es

fL(t; x) = 1 + 2t+ 2t2xfL(t; x) + txfL(t; x) ;

and therefore

fL(t; x) =
1 + 2t

1� tx� 2t2x
: (6)

We have
1X
n=0

�nt
n = fL(t; 1) =

1 + 2t

1� t� 2t2
: (7)

By partial fractions expansion of the right hand side of (7), we obtain

�n =
1

3
[2n+2 + (�1)n+1 ] : (8)

The generating function of the sequence �n can easily be found from fL(t; x) as

1X
n=0

�nt
n =

@

@x
fL(t; 1) ;
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where the substitution x = 1 is carried out after the di�erentiation with respect to x.
From the expression (6) we obtain the formula

@

@x
fL(t; 1) =

t(1 + 2t)2

(1� t� 2t2)2
=

8

9

1

(1� 2t)2
�

32

27

1

1� 2t
+

11

27

1

1 + t
�

1

9

1

(1 + t)2
:

Therefore,

�n =
(24n+ 56)2n + (8� 3n)(�1)n

27
(9)

as claimed. The limiting ratio (4) now easily follows from the expressions (8) and (9).
2

The average number of multiplications required by the recoded binary method after
n�1 squaring operations is equal to the average number of nonzero digits of the recoded
form of E. By Theorem 2, this number is

1�
�n

n�n
!

1

3
: (10)

In particular, (10) yields the average number of multiplications required by the
recoded binary method which was stated in [10]:

Corollary 1 For n large, the average number of multiplications required by the recoded

binary method is 4
3
(n� 1).

Now we compute the number of multiplications necessary in the preprocessing stage
when the powers of M corresponding to all the recoded bit-sections of length d are
evaluated.

Theorem 3 The number of multiplications required to compute Mw for all length d

recoded bit-sections w is

�d � 3 =
1

3
[2d+2 + (�1)d+1 ]� 3 :

Proof First we compute Mw where w contains only one nonzero letter. Since 1;M ,
and M�1 are already available, this step requires 2(d� 1) multiplications. After this,
each value Mw where jwja + jwj�a = k can be computed recursively from the already
computed values Mw, jwja + jwj�a < k by a single multiplication. It follows that the
total number of multiplications required is

�d � (1 + 2d) + 2(d� 1) = �d � 3

as claimed. 2

In the following theorem we give the average number of multiplications T 0(n; d)
required by the recoded m-ary method.
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Theorem 4 Recoded m-ary method requires

T 0(n; d) = n� 1 + �d � 3 +
�
n

d
� 1

� "
1�

�
2

3

�d#

=

"
1 +

1

d
�

1

d
(
2

3
)
d
#
n +

2d+2

3
+

(�1)d�1

3
+ (

2

3
)
d

� 5

multiplications on the average.

Proof The number of squaring operations in Step 3 of the recoded m-ary method
is equal to n � 1. The preprocessing time required to compute all necessary powers
Mw for all bit sections w with jwj = d is �d � 3 by Theorem 3. Finally, by Theorem

2 a recoded bit section w of length d is equal to zero with probability (2
3
)
d
. Since we

require a multiplication for each bit-section after the most signi�cant one (for which
the corresponding power of M is already available as the initial value), we need to
perform �

n

d
� 1

�"
1�

�
2

3

�d#

additional multiplications. 2

In Figure 1, the values of T 0(n;d)
n�1

are shown for n = 28; 29; : : : 216 and for d ranging
from 1 to 14. For a given value of n there exists an optimal value of d� of d which
minimizes the average number of multiplications T 0(n; d). It can be seen that the
recoded m-ary method allows for the computation of (1) with fewer than 1:33(n� 1)
multiplications. For example, when n = 210 with the optimal choice of d� = 5, the
average number of multiplications is found to be 1:212(n� 1). The optimal values d�

and T 0(n; d�) for several values of n are tabulated in Table 1.

Table 1. Figure 1.

n d� T 0(n; d�)

28 3 1:264(n� 1)

29 5 1:235(n� 1)

210 5 1:212(n� 1)

211 6 1:192(n� 1)

212 6 1:172(n� 1)

213 7 1:155(n� 1)

214 8 1:141(n� 1)

215 8 1:130(n� 1)

216 9 1:118(n� 1) 5 10 15

d

1

1.1

1.2

1.3

1.4

1.5

T
’(n

,d
)/

(n
-1

)

28
29

210
211

212
213

214
215

216
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Next we consider the magnitude of the optimal value of d which minimizes T 0(n; d)

for large n. More precisely, given a �xed � > 0, we try to �nd d = d(�) such that

T 0(n; d) � (1 + �)(n� 1) :

This means that for large n, we should have

1

d
�

1

d
(
2

3
)
d

� � (11)

by Theorem 4. To satify (11) it su�ces to take d = d1
�
e. Thus we have proved

Theorem 5 Given any � > 0, the recoded m-ary method with d = d1
�
e requires only

(1 + �)(n� 1)

average number of multiplications to compute C = ME (mod N) for large n.

Note that the values of d� given in Table 1 are in agreement with Theorem 5: for

� = 0:155 for example, d� = 7 and 1
�
= 6:451; and for � = 0:118, d� = 9 and 1

�
= 8:474.
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