Proceedings of the Third Conference on Hypercube Concurrent Com.-
puters and Applications, Vol. 2, pp. 1539-1545, Pasadena, Cali-

fornia, January 19-20, 1988.

Prefix Algorithms for Tridiagonal Systems on Hypercube Multiprocessors

Omer Egecioglu '

Department of Computer Science
University of California, Santa Barbara, CA 93106

Cetin K. Koc ¥ and Alan J. Laub *

Scientific Computation Laboratory
Department of Electrical & Computer Engineering
University of Califomnia, Santa Barbara, CA 93106

Abstract

The recursive doubling algorithm as developed by Stone can
be used to solve a tridiagonal linear system of size n on a parallel
computer with a processors using O (logn) parallel arithmetic
steps. Here we describe a limited processor version of the recur-
sive doubling algorithm for the solution of tridiagonal linear sys-
iems using O (n/p +logp) parallel arithmetic steps on a paral-
lel computer with p <n processors. The main technique relies
on fast parallel prefix algorithms, which can be efficiently mapped
on the hypercube architecture using the binary-reflected Gray
code. For p <<n this algorithm achieves linear speed-up and
constant efficiency over its sequential implementation as well as
over the sequential LU decomposition algorithm. These results
are confirned by numerical expeniments obtained on an Intel
iPSC/d5 hypercube multiprocessor.

1. Introduction
We are interested in solving the following system of linear
equations

Ax=d (N

where A is a (nonsymmetric) tridiagonal matrix of order n
by Co
a, b1 €1

das bz Ca

(L] bn—l Cn-2
I

and x and d are vectors of dimension n
: T
X=(X0, X4 Xp2 1 X1)

d=(dg,dise s ducs sy N

We shall assume that A, x,and d have real coefficients. Exten-
sion to the complex case is straightforward.

Permission to copy without fee all or part of this material is gra_med
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

© ACM 1988 0-89791-273-X/88/0007/1539 $1.50

..

1539

Tridiagonal systems of equations appear frequenty in the
solution of parial differential equations, cubic spline interpola-
tion, and in numerous other areas of science and engineering.
There has been a considerable amount of work to solve (1) on
parallel computers; see, for example, the review articles [4], [13],
and (19]. More recently Johnsson, et al. have developed algo-
rithms to solve such systems on ensemble architectures [5,6,7.8].
The recursive doubling algorithm is one of the first algorithms that
has resulted from considering parallelism in computation. This
approach relates the LDU decomposition of A 1o first and second
order linear recurrences. The well known relationship between (1)
and linear recurrences was uiilized by Stone to develop an algo-
rithm to solve (1) in O (logn) parallel arithmelic steps with n
processors [18]. This algorithm can be generalized o solve
banded linear systems as well [9].

The recursive doubling algorithm is suitable when a large
number of processing elements are available, such as the Connec-
tion Machine. In this paper we give a limited processor version of
the recursive doubling algorithm on hypercube multiprocessor
architectures with p <n processors. This algorithm is more suit-
able for hypercubes of smaller dimension such as the Callech
Hypercube, the Intel iPSC series, and the NCUBE. We show that
the limited processor version recursive doubling algorithm solves
a tridiagonal system of size n with arthmetic complexity
O (n/p +logp) and communication complexity O (logp) om
a hypercube multiprocessor with p processors. The algorithm
becomes more efficient if p < <n . The main techniques rely on
fast parallel prefix algorithms for which we describe an efficient
mapping using the binary-reflected Gray code. These techniques
can also be extended to solve banded or block tridiagonal linear
systems.

We compare the algorithm proposed here to the LU decom-
position algorithm and to a sequential version of the recursive
doubling algorithms. The theoretical estimates for speed-up and
efficiency, as well as the experimental results on an Intel iPSC/d5
hypercube multiprocessor indicate that the limited processor
recursive doubling algorithm achieves linear speed-up and its
efficiency is more than 0.5.

2, The LU Decomposition Algorithm

One of the most efficient existing sequential algorithms for
solving (1) relies on the LU decomposition of A ; see, for exam-
ple, [2]. Here A is decomposed into a product of two bidiagonal
matrices L and U as follows :

1 Supported in part by NSF Grant No. DCR-8603722.
% Supported in part by NSF (and AFOSR) under Grant No. EC584-06152.

W

1 fo Co
€)1 Fi1ey

€z | Faz Cp-2
En-1 ! fn&I

The algorithm then proceeds to solve for y from Ly=d and
then finds x by solving Ux =y . More precisely, the LU decom-
position algorithm (the LU Algorithm) to solve the system (1)
consists of the following steps:

The LU Algorithm

Step 1. Compute LU decomposition of A given by
fo=bg
e =a;/fiy 1=i <n-1
fi=bi—e*ciiy 15isn

Step 2. Solve for y from Ly=d using
Yo=dp

Yi=d;,—e * yiy 1=i§ 281

Step 3. Compule x by solving Ux =y using
Xt = Y1/ fui
N={yi-ci*x) f, 0<isn-2

We record -the number of arithmetic operations required by
the algorithm as
Theorem 1.

The LU Algorithm solves the tridiagonal linear system of
Size n using 8n —7 arithmetic operations.

Proof.

The proof is straightforward counting of the number of mul-
liplication, division, and subtraction operations performed in Steps
1,2,and 3 above. ®

3. Prefix Algorithms for Tridiagonal Systems

The equation (1) can be represented as a three-term
recurrence relation

4 x_+bx; +cx,=d, (2)
for 1<i < n-2 with

boxg+cgx=dy

Do Xp g+ by X =dy

Define ag=c, ;=1 and x_, =x, =0. Then with this conven-
tion, the relation in (2) holds for 05 i S n=1.

Solving for x;,, in equation (2) we get

b; a; d;
Xy ==—x; = Xy +— . (3)
i i Ci

Here we assume that all ¢; 's are monzero, since otherwise the
system of equations can be broken into two decoupled tridiagonal
Systems which can then be treated separately. Setting

q‘. = —— [——— 1 S T
: e Feg (4)
(3) can be rewritten as

X =0y x +0; X TV

for 0=i £ n—1 . This recurrence formula can be put in a matrix
form neatly as

X a; ﬁ:’ ¥; X
X = 1 0 0 X;
1; 0 0 1 'l_l

which is essentially the same idea developed in [18], Now define

Xi a‘] ﬁi T
X =| xy ad Bi=|1 0 0
1 0 0 1
Then we may write
X =8 X; 0=<i<np-1 (5)

This matrix recursion formula allows us to calculate all X; for
1 €4 < n—1 provided that the initial vector Xy is available. Since

Xo=[x9.x4, 1) = [x5,0,1]

all we need is to calculate x, 1o start the computation, Now note
that by repeated application of (4) we obtain

X|=BQX(_|
X2=B,X,=B,ByX,

X2 =By1Byy - By BygX,

Now let
C;=B:‘BJ'_|"'B|BQ OSISH‘—I
Then X, =C,_, Xg, or more explicitly
Xy oo 8ol Bm Xp
A1 | =| B0 E11 E1n2 Xy '
1 0 0 1 1
where
8oo 8o Bo2
Co-1=| 810 11 812 (6)
0 o0 1
and the g; depend on o, B;, ¥ for 0<i<n—1. Since

X, =x_; =0, by multiplying the first row of Coy With Xy we
obtain
O=gpoxo+go .
which gives us x; as
xtﬁ‘a . 7

Once X is available in this manner, we can calculate all X; for
1=i €£n-1 by using the matrix recursion formula X, =C1X,.

The sequential prefix algorithm (The SP Algorithm) 10
solve the tridiagonal system (1) thus proceeds as follows :

The SP Algorithm
Step I. Form the matrices B; for 0<{ < n—1 using (4).
Step 2. Compute the chain products C; by

Co=8y

C;=B;C, 1<i <n-1

Step 3. Compute x4 and hence X using (7).
Step 4. Compute X; and hence x; using
Xi' =C'l'—l XU

1<i<n-1

Step 2 of this algorithm essentially calculates prefixes of the
matrices (Bg,B1,Bz, -+ +Bpy) (here we imagine that the
matrix products are performed in reverse order). If this algorithm
is used to solve a tridiagonal system of dimension 2 sequentially,
then O (n) arithmetic operations suffice, but the algorithm tums
out 10 be slightly less efficient then the LU Algorithm. Neverthe-
less it is more suitable for efficient implementation on a parallel
machine than the LU Algorithm,

Theorem 2.

The SP Algorithm for the solution of the tridiagonal linear
system of equations (1) requires 15n — 11 arithmetic operations.

Proof.

Step | requires 3n divisions to form the B, matrices. In
Step 2 we perform n —1 matrix multiplications to compute the
C; matrices, but because of the special structure of the matrices
each matrix multiplication can be performed using 6 floating-
point multiplications and 4 floating-point additions. Hence Step
2 requires 6(n—1) multiplications and 4({n-1) additions.
Step 3 is a single division. In Step 4 1o compute all x; for
1 <i € n—1 we perform n—1 multiplications and n—1 additions.
Thus the total number of arithmetic operations sums [0

15n—-11. @

4. Parallel Prefix on Hypercube Multiprocessors

In this section we show that the prefix algorithm for the solu-
tion of a tridiagonal linear system of equations can implemented
efficiently on hypercube multiproccssors.

Step 2 of the SP Algorithm where the prefixes of the
matrices (Bg,B,, -*- ,B,) are computed is the bottleneck
point in the algorithm. An efficient parallel implementation of the
recursive doubling algorithm depends on how efficiently this com-
putation can be performed. Various parallel algorithms have been
developed for prefix computation (10] [11]. The prefixes of the
quantities (go.41. ' +ga1) can be computed in logn
steps’ given n processors. Here each step consists of a suitably
defined binary operation performed in any of the identical proces-
sors. For n =8 the parallel prefix algorithm is given in Figure 1.
This algorithm is the same as the algorithms given in [10] and
[18]. For simplicity we denote the product block g; gy .- @1 4
as j i .Forexample g7q¢q54q4 is denoted by the pair 74.

If the element ¢; is initially allocated to processor p; then
atstep k, for 1<k Slogn , processor p; sends its data to pro-
cessor p; where j =i +2"". Processor p; receives this data
and multiplies with its own and writes the result where its data
resides.

The implementation of this algorithm on a hypercube mul-

tiprocessor will be efficient only if the communication require-
ments of this algorithm are minimal, This requires that we map the
parallel prefix algorithm efficiently oh the cube. First we give a
definition of a hypercube connected parallel computer:
Definition: Hypercube connected parallel computer: 1If p = 24
and by---by is the binary representation of b for
be[0,.,p-1] and bW is the number whose binary represen-
tation is by..byibibiy - by, where b; is the complement of
b; and 1<i <d then in a hypercube connected computer, pro-
cessing element & is connected te processing element 5@, for
1<isd [15,16,17].

Now we give the definition of the binary-reflected Gray code
and a lemma related to the mapping of the parallel prefix algo-
rithm on the cube:

t All logarithms are base 2.

1541

Definition: Binary-reflected Gray code: G(b)=8,84-1 ' g1 of
a d bit binary number b = byb, - -+ b, is defined by setting
(14]

gi=bi+byy mod?2, fori=1,2,.,d-1, ga=by

Lemma 1.

If b and ¢ are two d -bit binary numbers such that
0<b $29-1-2¢" and ¢ =b +2%" then the Hamming distance
between G(b) and G(c) is 1 if k=1 and 2 if 25k <d .
Furthermore the communication paths are disjoint.

(For proof see Lemma 5.1 in [6].)

Thus we allocate the element g; to processor G (i). The
parallel prefix algorithm requires that at step &k for
1 €k <logn , the node o which element g; is allocated should
communicate with the node to which element g; .+ is allocated.
The distance between nodes G(i) and G(i+2*') is 1 if
k=1 and 2 if 2<k €logn . Hence we see that by making use
of the properties of a Gray code, locality is achieved at the sole
expense of slightly increasing the number of routing instructions.
The hypercube implementation of the parallel prefix algorithm
proposed here requires at most twice the number of routing
instructions of a fully-connected system implementation.

The following pseudo-code shows the required computa-
tions. This code runs in all nodes concurrently. The binary
address of each node is returned when the subroutine node_id ()
is called, The subroutine G~'(.) convens from Gray code to
binary code. For example G~'(110)=100. Initially the node
G (i) contains the element g; . This element, which is local to
node G (i), is denoted by Q . At the end of the computation
node G (i) contains the product goq, -+ ¢; . Without loss of
generality we assume that n =2%

PROCEDURE Parallel_Prefix (n ,Q)
i =G (node_id ())
FOR k=1 TO logn DO BEGIN
IFie(0,.,n—-1-25") THEN
SEND Q TOPROCESSOR G (i +2¥!)
IFie (2%, .,n—1} THEN -
RECEIVE temp_Q
Q =temp 0 *Q
END FOR
END PROCEDURE.

Thus we have the following lemma:
Lemma 2.

The prefixes of n elements can be computed in logn arith-
metic and in 2logn —1 communicarion steps on a hypercube
with n nodes.

Proof.

It follows from Lemma 2 that the first step will cost 1 arith-
metic and 1 communication step. The remaining steps cost
logn —1 arithmetic and 2(logn —1) communication steps.
L

Now we suppose that we have p processors with p <n
and m p =n . Then the prefixes of n elements are computed as
follows: we allocate m elements to each processor and perform

sequential prefix at each processor lo find prefixes of Lhese cle-
ments. Then we find prefixes of the p product blocks by per-
forming the parallel prefix algorithm. Processor { sends this pro-
duct to processor i +1 for0<{ <n-2 and this element is multi-
plied with each element in the processor except the last one. Ini-

tially we allocate the elements Qi lm=1 i lym2
node G (i). These elements, which are local to node G (i),

+ Jim 10

are denoted @, ,Q;....Q, . After the sequential prefix at each
node we obtain a product block at each node. This result

@1Q2 " Qm =qrim1 Qiistim2 " Fim

also resides in node & (7). At the end of all computations the
node G (i) contains the products

qod192 . Grlim-1
Fod192 - 9is1ym=1 9 (i+1}m=2

Fod192 - 9 i+1m=1 9 (i+1m=-2 - $im

The following code shows the required computations:

PROCEDURE Parallel_Prefix (n.p ,Q;,0Q3.,
{ limited processor case; n=m p |
i=G ' (node id ())
FOR & =2 TO m DOBEGIN
Q=0 * Oy
END FOR
FOR % =1 TO logn DO BEGIN
IFie(0,.,n—1-2"1} THEN
SEND @, TO PROCESSOR G (i +2*1)
IFie(2¥',.,n-1) THEN
RECEIVE temp_0O,,
Qn =temp Oy * O
END FOR
I[Fie(0,.,n—-1-2%"} THEN
_ SEND @, TOPROCESSOR G (i+1)
IFie(l,.,n—1) THEN
RECEIVE temp
FOR k=1 TO m —1 DO BEGIN
Qi =temp_Qp * Oy
END FOR
END PROCEDURE.

v Gm)

Lemma 3.

The prefixes of n=mp elements can be performed in
2nlp +logp —2 arithmetic and 2logp communication steps
on a hypercube with p nodes.

Proof.

First we perform sequential prefix computation which costs
m —1 arithmetic steps. The parallel prefix costs logp arith-
metic and 2logp —1 communication steps according to Lemma
2. The transfer of the last element of each block to the next proces-
sor will take 1 communication step. Then we multiply this ele-
ment with each element in the processor éxcept the last one which
will take m - 1 arithmetic steps. Thus the total number of arith-
metic and communication steps become 2m +logp —2 and
2logp ,respectively. @

In Figure 2 we illustrate the limited processor parallel prefix
algorithm for the values of n =12 and p =4. Thus it takes
2 log 4 =4 communication steps and 2 l% +logd—-2=6 arith-
metic steps to compute prefixes of 12 terms with 4 processors.

For parallel implementation of the SP Algorithm (hen-
ceforth called the PP Algorithm) we allocate m matrices to each
processor and perform the limited processor parallel prefix algo-

rithm with these matrices. Considering all four steps of the SP
Algorithm for the solution of (1) we have the following theorem:

1542

Theorem 3.

The PP Algorithm solves (1) with n=mp |n
35n/p +20logp —29 parallel arithmetic and 13logp com-
munication steps on a hypercube with p nodes.

Proof.

Step 1 is performed in 3m divisions since there are m
matrices allocated to each processor.

Step 2 has 3 substeps. In the first we perform sequential
prefix at each processor. Because of the special structure of the
matrices each matrix muitiplication is performed with 6 multipli-
cations and 4 additions. Hence the first substep costs
10(m — 1) arithmetic operations. [n the second substep of Step
2 we perform parallel prefix using these product blocks. We lose
some of the structure in the matrices involved and perform matrix
multiplication using 12 multiplications and 8 additions. Thus
the parallel prefix step will take 20logp arthmetic steps. Since
only the first two rows of the matrices need to be communicated,
the parallel prefix step will take 6(2logp — 1) communication
steps. In the third substep of Step 2 we first send the product block
in processor G (i) to processor G (i + 1) which will cost 6
communication steps. Then we multiply this element with all the
elements in the processor except the last one. This substep costs
20 (m — 1) arithmetic steps since the matrices are multiplied
with 12 floating-point multiplications and 8 foating-point addi-
rons.

In Step 3 processor p — 1, which holds the matrix C,_,,
calculates xq by performing a single division, and then xp is
broadcast to all other processors. This operation can be performed

in logp communication steps by embedding a suitable tree of
depth logp [15,16). In Step 4 we calculate all x; by performing
m multiplications and m additions per processor. The total
result follows by summing the number of arithmelic operations

and communication steps. @

Step Arithmetic Complexity Communication Complexity
1 im -
2 30(m-1)+20logp 12 logp
3 1 logp
4 2m -
Total 35m +20logp - 29 13logp

Finally it is interesting to observe that an SIMD system with
processor masking capability is adequate for the algorithm
although in actual experiments we used the Intel iPSC/d5 which is
an MIMD system.

5. Estimated Speed-up and Efficiency

The speed-up and efficiency of the PP Algorithm with
respect 1o the LU and the SP Algorithms can be estimated using
the arithmetic and communication complexity figures found previ-
ously. We have performed experiments, similar to those men-
tioned in [12], on the Intel iPSC/dS hypercube running XENIX
286 R3.4 and iPSC Software R3.1 to measure the time it takes to
perfurm a floating-point operation (Tgymp), and the time it takes
to transfer a floating-point number to an adjacent node (T.ymm)-
The experiments indicated that T,,., = |.48 milliseconds, and if
the foating-point operation is taken to be multiplication, addition,
or subtraction then T, =0.058 milliseconds. Division takes a
little longer (around 0.072 milliseconds). Using these we can
estimate the speed-up of the PP Algorithm with respect to the LU
and SP Algorithms as

O —

5 —Ti— (8nrn =7) Teomp
P T (35n1p +20108p —29) Tomp + (131087) Trmem
PO (150 =11) Temp
o= Toe (35n/p +20l0gp —29) Teamp + (13 10BP) Teomm

Similarly the efficiency of the PP Algorithm with respect (o
the LU and the SP Algorithms is found as

£ _ Seeey (81 —T7) Tomp
BRI (351 +20p 1087 —29P) Tromp + {137 1087) Temem
E _ Serse _ (157 =11} T
i P T (350 +20p l0gp =299)T + (139 1087) Teorm

The results are shown in Table 1 for the value of p =32 for the
values of Teomp =0.058 and T,pmn =148,

6. Experimental Results and Conclusions

We have experimented on an Intel iPSC/d5 hypercube sys-
tem for values of n between 32 and B8192. The LU and SP
Algorithms were run on a single node and the PP Algorithm was
runon 1, 2, 3, 4, and 5 dimensional subcubes. The initial
loading of the data was not taken into account for any of these
algorithms. The experiments were done to compute the cubic
spline approximation of some random data. The types of tridiago-
nal matrices that arise in cubic spline approximation are diago-
nally dominant and mostly symmetric [1]. It has been shown that
some stability problems arise in the use of the recursive doubling
algorithm when the size of the system is large [3]. Since the size
of memory on the Intel iPSC/5 is about 300 kilobytes/node,
experimentation was kept to tridiagonal systems of size no more
than 8192.

The computation and communication times were measured
using the clock() routine at the beginning and e¢nd of each pro-
gram. The timings of the LU, SP, and PP Algorithms are given in
Table 2 in milliseconds. Using these data we can compute the
measured speed-up and efficiency of the PP Algorithm with
respect to its sequential counterparts. These are shown in Table 3
for the value of p =32 (compare Table 1 to Table 3). Also, in
Figure 3a we show the estimated and measured efficiency of the
PP Algorithm with respect to the LU Algorithm as a function of
dimension of the cube for n = 8152 . Similarly, the PP Algorithm
is compared to the SP Algorithm in Figure 3b. The small differ-
ences between the estimated and measured values are due to the
fact that we assumed all floating-point operations take the same
amount of time, and also overhead factors, such as loop control,
memory fetch, etc. were not taken into account.

The experimental results have shown the proposed algerithm
achieves linear speed-up and its efficiency is somewhere between
0.50 and 0.60.

References

1. Ahlberg, J. H., Nilson, E. N. and Walsh, J. L. The Theory of
Splines and their Applications, Academic Press, 1967.

2. Dongarra, J.J., Bunch, J. R., Moler, C. B, and STEWART,
G.W. Linpack Users’ Guide, SIAM, Philadelphia, 1979.

3. Dubois, P. and Rodrigue, G. An analysis of the recursive
doubling algorithm, in High Speed Computer and Algorithm
Organization, edited by D. J. Kuck, D, H. Lawrie and A. H.
Sameh, pp. 299-305, Academic Press, 1977.

4, Heller, D. A survey of parallel algorithms in numerical
linear algebra, SIAM Review, pp. 740-777, October 1978

5. Johnsson, S. L. Band matrix systems solvers on ensemble

architecture, in Supercomputers: Algorithms, Architectures,
and Scientific Computation, edited by F. A. Matsen and T.

11.

12.

13.

14.

15.

16.

17.

1543

Tajima, pp. 196-216, University of Texas Press, Austin,
1986.

Johnsson, S. L. Solving tridiagonal systems on ensemble
architectures, SIAM Journal on Scientific and Statistical
Computing, Vol. 8, No. 3, pp. 354-392, May 1987.

Johnsson, S. L. Communication efficient basic linear alge-
bra computations on hypercube multiprocessors, Journal of
Parallel and Distributed Computing, No. 4, pp. 133-172,
1987,

Johnsson, 8. L. and HO, C. T. Multiple tridiagonal systems,
the altemating direction methods and boolean cube
configured multiprocessors, Research Repor, Yale Univer-
sity, YALEU/DCS/RR-532, June 1987.

Kogge, P. M. and Stone, H. S. A parallel algorithm for the
efficient solution of a general class of recurrence equations,
IEEE Transactions on Computers, Vol. C-22, No. 8, pp.
786-793, August 1973,

Kruskal, C. P., Rudolph, L. and Snir, M. The power of
parallel prefix, [EEE Transactions on Computers, Vol. C-34,
No. 10, pp. 965-968, October 1985.

Ladner, R. and Fischer, M. Parallel prefix computation,
Journal of ACM, Vol. 27, No. 4, pp. 831-838, October 1980.

Mcbryan, O. A. and Van de Velde, E. F. Hypercube algo-
rithms and implementations, STAM Journal on Scientific and
Statistical Computing, Vol. 8, No. 2, pp. s227-s287, March
1987.

Ortega, J. and Voigt, R. Partial differential equations on
vector and parallel computers, SIAM Review, pp. 149-240,
June 1985.

Reingold, E. M., Nievergelt, J. and DEQ, N. Coembinatorial
Algorithms: Theory and Pracrice, pp. 173-179, Prentice-
Hall, 1977.

Saad, Y. and Schultz, M. H. Data communication in hyper-
cubes, Research Report, Yale University,
YALEU/DCS/RR-428, October 1985.

Saad, Y. and Schultz, M. H. Topological properties of
hypercubes, Research Report, Yale University,
YALEU/DCS/RR-389, June 1985.

Seitz, C. L. The cosmic cube, Communications of the ACM,
Vol. 28, No. 1, pp. 22-33, January 1985.

Stone, H. S. An efficient parallel algorithm for the solution
of a tridiagonal linear system of equations, Journal of ACM,
Vol. 20, No. 1, pp. 27-38, January 1973.

Stone, H. S. Parallel tridiagonal equation solvers, ACM
Transactions on Mathematical Software, Vol. 1, No. 4, pp.
289-307, December 1973.

Table 1. Estimated speed-up and efficiency for p =32.

n Seer | Serise | Erewwr | Eprise

32 0.14 0.27 0.004 0.008
64 0.28 0.53 0.009 0.017
128 0.54 1.02 0.017 | 0.032
256 1.02 1.91 0.032 0.060
512 1.79 335 0.056 0.105
1024 2.87 539 0.090 | 0.168
2048 4.13 7.74 0.129 0.242
4096 5.28 %.89 0.165 0.309
8192 6.13 1149 | 0.192 0.359

Table 2. The timings of the LU, SP, and PP Algorithms (in milliseconds).

n Ly | se pP: 2 pP: 4 pP: B | K a Y
312 | 15 | a0 | a0 30 25 25 75
64 | 30 | 75 80 45 35 60 85
128 | 60 | 155 | 155 85 55 65 90
256 | 120 | 315 | 310 160 95 80 100
s12 |.235 | 25 | 615 | 315 165 125 120
1024 | 480 | 1250 | 1225 | 620 | 320 210 150
2048 | 960 | 2495 | 2445 | 1230 | e25 370 230
4096 | 1920 | 4990 | 4885 | 2450 | 1235 | 655 400
8192 | 3840 | 9990 | 9775 | 4895 | 2455 | 1260 685

Table 3. Measured speed-up and efficiency for p =32

n Serrr | Serse | Errw | Eppise

32 | 020 | 053 | 0006 | 0.017
&4 | 035 | 088 | 0011 | 0028
128 | 067 | 172 | 0021 | 0.054
256 | 120 | 315 | 0.038 |- 0.098
512 1.96 5.21 0.061 0.163
1024 | 320 [833 | 0.100 | 0.260
2048 417 10.85 0.130 0.339
4096 4.80 12.47 0.150 0390
8192 | 561 | 1458 | 0.175 | 0.456

1544

NV

Figure 1. The parallel prefix algorithm for n =8 .

o
=
o

=
—_—
=

[¥]

i
%

[
(=]

30

40

%G
44
s
,e

LA
=

=1
h
~3
=

70
Figure 2. The limited processor version of parallel
- prefix algorithm for n =12 and p =4.
0) 0
10 10 10
20 20 20
20, 20
L) 0 j 30
43 43 0
50 50 50

50 50
;&0&6@
76 76 70
80 30 {1]

80, 80
9&90&0
A9 A9 0
BO BO BO

PP/LU efliciency

Figure 3a. n = 8192 Figure 3b. n = 8192

04—

T — 1
N

I

PP/SP efficiency

02—

o
T
L ..;_J.._l._l.__ -
T TR s

| measured B | measured
L [~ - - estimated r l_ - estimated
gl e | IR I A A Ol e TR = 0.0 —1 S| R [B |
1 2 L] 4 5 1 2 a 4
dimension of cube dimension of cube

1545

w

THE THIRD CONFERENCE ON

Hypercube Concurrent Computers
and Applications

Volume II - Applications
1988

Edited by:
Geoffrey Fox
California Institute of Technology
Mail Stop 206-49

Pasadena, CA 91125

gef@tybalt.caltech.edu
gef@hamlet (BITNET)

Proceedings of the Third Conference on Hypercube Multiprocessors organized by the Jet

Propulsion Laboratory of the California Institute of Technology. Held at the Pasadena Civic-
Center, Pasadena, California, January 19-20, 1988.

xiii

