
Bitsliced High-Performance AES-ECB on GPUs

Rone Kwei Lim, Linda Ruth Petzold, and Çetin Kaya Koç(B)

Department of Computer Science,
University of California, Santa Barbara, CA 93106, USA

{rklim13793,petzold,koc}@cs.ucsb.edu

Abstract. In order to perform high-performance Monte Carlo simula-
tions of fracture in certain composite materials, we needed fast methods
for generating deterministic random numbers. We made several design
choices, and due to the fact that the entire simulation was to be done
on both CPUs and GPUs, we designed new methods for fast implemen-
tation of the AES in the ECB mode on such architectures. This paper
describes our algorithms and summarizes the performance results. In our
implementation we were able to produce a speed of 78.6 Gbits per sec-
ond on the GeForce GTX 480, which was 31–62 % faster than the fastest
implementations reported in the recent literature on similar devices.

1 Introduction

The purpose of this study was to develop fast methods for generating determin-
istic random numbers using the AES in the ECB mode. The resulting random
numbers were intended to be used in high-performance Monte Carlo simulation
of fracture in certain composite materials [10]. The simulations for this study
were done both on CPUs and GPUs to obtain the fastest implementations,
and thus, to compare the speedup gain. We were motivated to develop high-
speed implementations of the 128-bit AES-ECB on the NVIDIA GTX 480 GPU,
and subsequently obtained significantly faster implementations of the AES. The
present paper reports our implementations along with comparisons to recent
results found in the literature.

2 CPU Versus GPU Architectures

A general-purpose CPU generally has several cores to run multiple threads, and a
large cache for immediate access to the data, and also, sophisticated flow control
mechanisms such as branch prediction, data and instruction prefetching, and
out-of-order execution. The availability of floating-point ALUs make such CPUs
very suitable for scientific computing tasks, achieving double-precision floating-
point arithmetic at the rates of 40-160 GFlop/second at their peak performance.
In the context of the research on Monte Carlo simulations of fractures [10], we
worked with Intel Core 2 Quad Q6600 CPU at 2.4 GHz and Intel Core i7 2600
CPU at 3.4 GHz. The latter CPU has 4 physical cores and 8 MB cache.

c© Springer-Verlag Berlin Heidelberg 2016
P.Y.A. Ryan et al. (Eds.): Kahn Festschrift, LNCS 9100, pp. 125–133, 2016.
DOI: 10.1007/978-3-662-49301-4 8



126 R.K. Lim et al.

In contrast, a GPU, such as NVIDIA GTX 580, has a large number of execu-
tion units to process data in parallel. The original intention for designing GPUs
was to create hardware that performs 3D graphics processing, however, the GPU
architectures have evolved, coupled with a sophisticated computational model
and a platform of computation called CUDA (Compute Unified Device Archi-
tecture). This new platform offered a C-like programming language, while the
hardware provided integer, logical and floating-point instructions to support a
wide range of computational needs in scientific computing. The present imple-
mentation was done on the NVIDIA GTX 580 which has 16 SMs (Streaming
Multiprocessors) where each SM has 32 SPs (Shader Processors). Each SM exe-
cutes independent streams of instructions while the SPs within each SM execute
instruction in an SIMD fashion. The NVIDIA GTX 580 has 64K L1 cache and
768K L2 cache.

There are no sophisticated control flow mechanisms similar to CPUs, how-
ever, GPUs run large numbers of threads, providing large parallelism. If a pro-
gram can be broken up into many threads all doing the same computation on
different data (ideally, executing arithmetic operations), a GPU will probably be
an order of magnitude faster than a CPU. On the other hand, applications with
complex control flow, a CPU is going to be faster many orders of magnitude.

Figure 1, reprinted from [10], makes a comparison of the “silicon budget” (sil-
icon area or number of transistors) for a CPU versus a GPU. The CPU uses most
of its transistors for the control logic, the ALUs and the cache. On the other had
GPUs spend nearly all of its available silicon area for its simple processors (ALUs).

Fig. 1. The silicon area for a CPU versus a GPU [17].

2.1 GTX 480

We have implemented our algorithms on the NVIDIA GTX 480 GPU, which
is based on the Fermi architecture. It has 15 SMs (Streaming Multiprocessors),
where each SM has 32 SPs (Shader processors). Each SM can execute indepen-
dent streams of instructions, whereas the SPs within each SM execute instruc-
tions in a SIMD (Single Instruction Multiple Data) manner. The NVIDIA GTX



Bitsliced High-Performance AES-ECB on GPUs 127

480 has a 64K L1 cache per SM and a 768K L2 cache shared over all SMs.
It also has 32768 registers per SM and 1.5 GB of global GPU memory. GPUs
lack the sophisticated flow control mechanisms that are present on CPUs, such
as branch predictor. Instead, GPUs have more transistors devoted to execution
units and are designed to run large numbers of threads, which makes them suited
for problems with a high degree of parallelism [22,24]. Figure 2 shows a schematic
illustration of the Fermi architecture.

Fig. 2. Fermi architecture diagram [22].

2.2 Comparing GPUs

The GTX 285 has 30 SMs, each with 8 SPs. It has 16K L1 cache per SM and no
L2 cache. It also has 16384 registers per SM and 1 GB of global GPU memory.
In comparison, the 8800 GTX has 16 SMs, each with 8 SPs. It has 16K L1 cache
per SM and no L2 cache. It also has 8192 registers per SM and 768 MB of global
GPU memory.

We find it useful to make a comparison of various GPUs that we are ref-
erencing in the context of our AES implementations. Table 1 compares various



128 R.K. Lim et al.

Table 1. Comparison of various GPUs.

8800 GTX [18] GTX 285 [19] Tesla C2050 [21] GTX 480 [20]

Bus bandwidth 4 GB/s 8 GB/s 8 GB/s 8 GB/s

Memory size 768 MB 1024 MB 3072 MB 1536 MB

Mem bandwidth 86.4 GB/s 159.0 GB/s 144 GB/s 177.4 GB/s

SP count 128 240 448 480

SP clock 1350 MHz 1476 MHz 1150 MHz 1400 MHz

CC 1.0 1.3 2.0 2.0

GPUs referenced in this paper. Here, CC refers to “Compute Capability”, which
is an index assigned by NVIDIA to the CUDA devices to indicate its set of
computation-related features. Higher CC indicates newer architectures, and the
NVIDIA’s newest devices have a CC up to 3.5 [16].

3 AES Encryption on CPU and GPUs

Since the standardization of the Rijndael algorithm as the Advanced Encryp-
tion Standard by NIST [14], many implementations have been reported in the
literature, most of which rely on known techniques. The creators of the Rijndael
algorithm describe two fundamental techniques for 8-bit and 32-bit CPUs [4].
The most common use of the AES is for the 128-bit (16-byte) key; it is projected
that AES will be 40 % slower [1] for 32-byte keys since it uses 14 rounds, instead
of 10.

Furthermore, there are several modes of operation: the CBC (cipher-block
chaining), the ECB (electronic code-book), the OFB (output feedback), and
the CTR (counter) modes, etc. Moreover, there are several ways of benchmark-
ing the AES software, making a fair comparison very difficult. Most common
comparisons involve AES-ECB and AES-CTR modes. We refer the reader to a
highly useful paper by Bernstein and Schwabe [1] that gives extensive analyses
of various implementations, along with the most impressive benchmark results.

Earlier GPU implementations [3,5,28] used graphics pipeline and OpenGL to
compute the AES round function, since CUDA was not available back then. The
availability of CUDA made sophisticated high-speed implementations possible.

Another point of discussion that is relevant to the present paper is bitsliced
AES implementations on various CPUs. There are several papers of interest:
Rebeiro et al. [27], Matsui [12], and Matsui and Nakajima [13]. Bitsliced imple-
mentations are not as competitive with word-level implementations on CPUs
due to the cost of transpositions of the ciphertext.

4 AES-ECB on the GPUs

Our implementation starts with the CPU-based bitsliced implementation of the
AES by Kasper and Schwabe [8]. Their implementation processes 8 16-byte



Bitsliced High-Performance AES-ECB on GPUs 129

blocks at a time. A direct conversion to a GPU implementation results in poor
performance, due to an insufficient number of registers. The 8 blocks alone take
up 32 registers per thread, and each thread is limited to 63 registers maximum.
The result is that the compiler spills variables into memory instead of keeping
them in registers.

We restructured the algorithm to process 4 16-byte blocks at a time to
improve performance. The sections below describe the performance improve-
ments we made to various parts of the AES algorithm.

4.1 Bit Ordering

In our bitslicing implementation, bits from multiple blocks are collected together,
i.e., bit 0 of row 0, column 0 from blocks 0, 1, 2, 3 are grouped together, as shown
in Figs. 3 and 4. Each bitsliced state variable has 64 bits; there are 8 of these
state variables.

Fig. 3. The state of one block.

Fig. 4. The bitsliced state.

4.2 Load and Store

On GPUs, the performance of global memory is improved when it is accessed
contiguously. When reading the input blocks, we first load the blocks contigu-
ously from global memory to shared memory, and then distribute them among
individual threads. Similarly, when writing the output blocks, we first write the
blocks to shared memory from individual threads, and then collect them together
and store to global memory contiguously.



130 R.K. Lim et al.

4.3 SubBytes

The AES algorithm defined in [14] used a table lookup for the S-box. In the bit-
sliced implementation, the table lookup is replaced by a series of Boolean opera-
tions (xor, or, and) [8]. Kasper and Schwabe [8] used 163 CPU SSE instructions.
In our implementation, since we restructured the algorithm to process 4 blocks at
a time, extra registers are available that we use to store intermediate values, thus
reducing the instruction count to 117 × 2. The doubling of the instruction count
arises from the fact that the GPU registers are 32 bits, thus, each 64-bit bitsliced
state requires 2 operations to process. Since the two halves can be processed inde-
pendently, we utilize ILP (instruction level parallelism) to increase performance.

4.4 ShiftRows

In this step, the bytes in a block are shifted by a variable amount for each row, as
shown in Fig. 5. In the bitsliced state, this operation becomes a rearrangement
of nibbles (4-bits), as shown in Fig. 6. The CPU version used the pshufb instruc-
tion [8], but this instruction is not available on the GTX 480. Instead, we found
the GTX 480 has a prmt instruction that rearranges bytes [23]. We combined
this instruction with the standard C bit operations (>>, <<, &, |, ^) to improve
performance. The CPU version uses 8 SSE instructions [8], while our GPU ver-
sion uses 32 prmt, 16 shift, and 16 bitwise and instructions. The GPU version
requires more instructions since it involves handling nibbles (4 bits) instead of
whole bytes (8 bits).

Fig. 5. The ShiftRows step.

Fig. 6. The ShiftRows step for the bitsliced state.



Bitsliced High-Performance AES-ECB on GPUs 131

4.5 MixColumns

This step involves a matrix multiplication over the AES finite field, as specified
in [14] (see Fig. 7). Using Boolean operations, the matrix multiplication becomes
a sequence of shifts and xor operations. The CPU version of Kasper and Schwabe
uses 16 pshufd and 27 xor instructions [8], while our GPU version uses 27×2 xor
and 8 × 2 prmt instructions. The 2 factor is explained in the SubBytes section.

Fig. 7. Matrix multiplication in MixColumns.

4.6 AddRoundKey

This step requires only xor operations. Our GPU version loads the 10 round keys
into shared memory to improve performance when processing multiple blocks.
By loading the round keys into shared memory, we avoid having to read the
round keys from GPU global memory repeatedly.

4.7 Resistance to Timing-Attack

The CPU-based algorithm of Kasper and Schwabe is resistant to timing side
channels due to the use of constant time operations [8]. By using a bitslicing
approach, our algorithm is also resistant to timing side channels. All operations
that involve key or data use bitwise operations whose execution time does not
depend on the values of the data. In contrast, other GPU-based AES implemen-
tations use lookup tables whose execution time depends on the data, i.e., these
operations are not constant time. Furthermore, the bitsliced implementations
are also inherently immune to the cache-timing attacks, as discussed in [1,2,26].

5 Results and Conclusion

We summarize all recent results in Table 2, along with our result in the last row.
This table shows we have the fastest GPU implementation among all reported
results.

Considering that CC (Compute Capability) of these devices is a good indi-
cation of their architectural richness and computational power, we notice that



132 R.K. Lim et al.

Table 2. Comparing recent implementations. CPU speeds are per core.

CPU Bernstein and Schwabe [1] Core 2 Quad Q6600 1.82 Gbit/s

Kasper and Schwabe [8] Core 2 Quad Q6600 2.06 Gbit/s

Core 2 Quad Q9550 2.99 Gbit/s

Core i7 920 3.08 Gbit/s

OpenSSL 1.0.1e [25] Core i7 2600 0.98 Gbit/s

Core i7 2600 (AES-NI) 5.78 Gbit/s

GPU Manavski [11] GeForce 8800 GTX 8.28 Gbit/s

Iwai et al. [6,7] GeForce GTX 285 35.2 Gbit/s

Nishikawa et al. [15] Tesla C2050 48.6 Gbit/s

Li et al. [9] Tesla C2050 60.0 Gbit/s

This implementation GeForce GTX 480 78.6 Gbit/s

the first two devices (GeForce 8800 GTX and GeForce GTX 285) have their
CCs as 1.0 and 1.3, respectively, while remaining two devices (Tesla C2050 and
GeForce GTX 480) are both 2.0, however, our AES-ECB implementation on a
device with the same CC is 62 % faster than that of Nishikawa et al. [15] and
31 % faster than that of Li et al. [9].

Moreover, our implementation is quite practical; it is used in the deterministic
RNG portion of a successful Monte Carlo simulator for fracture computation in
certain composite materials, as described in [10].

References

1. Bernstein, D.J., Schwabe, P.: New AES software speed records. In: Chowdhury,
D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 322–
336. Springer, Heidelberg (2008)

2. Bernstein, D.J.: Cache-timing attacks on AES (2005). https://cr.yp.to/
antiforgery/cachetiming-20050414.pdf

3. Cook, D.L., Ioannidis, J., Keromytis, A.D., Luck, J.: CryptoGraphics: Secret Key
Cryptography Using Graphics Cards. In: Menezes, A. (ed.) CT-RSA 2005. LNCS,
vol. 3376, pp. 334–350. Springer, Heidelberg (2005)

4. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

5. Harrison, O., Waldron, J.: AES encryption implementation and analysis on com-
modity graphics processing units. In: Paillier, P., Verbauwhede, I. (eds.) CHES
2007. LNCS, vol. 4727, pp. 209–226. Springer, Heidelberg (2007)

6. Iwai, K., Kurokawa, T., Nishikawa, N.: AES encryption implementation on CUDA
GPU and its analysis. In: 2010 First International Conference on Networking and
Computing (ICNC), pp. 209–214. IEEE (2010)

7. Iwai, K., Nishikawa, N., Kurokawa, T.: Acceleration of AES encryption on CUDA
GPU. Int. J. Netw. Comput. 2(1), 131–145 (2012)

8. Käsper, E., Schwabe, P.: Faster and timing-attack resistant AES-GCM. In: Clavier,
C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 1–17. Springer, Heidelberg
(2009)

https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf


Bitsliced High-Performance AES-ECB on GPUs 133

9. Li, Q., Zhong, C., Zhao, K., Mei, X., Chu, X.: Implementation and analysis of
AES encryption on GPU. In: 14th IEEE International Conference on High Perfor-
mance Computing and Communication and 9th IEEE International Conference on
Embedded Software and Systems, HPCC-ICESS 2012, pp. 843–848 (2012)

10. Lim, R.K., Pro, J.W., Begley, M.R., Utz, M., Petzold, L.R.: High-performance
simulation of fracture in idealized ‘brick and mortar’ composites using adaptive
Monte Carlo minimization on the GPU (Manuscript, in preparation, November
2014)

11. Manavski, S.A.: CUDA compatible GPU as an efficient hardware accelerator for
AES cryptography. In: IEEE International Conference on Signal Processing and
Communications, 2007, ICSpPC 2007, pp. 65–68 (2007)

12. Matsui, M.: How Far Can We Go on the x64 Processors? In: Robshaw, M. (ed.)
FSE 2006. LNCS, vol. 4047, pp. 341–358. Springer, Heidelberg (2006)

13. Matsui, M., Nakajima, J.: On the power of bitslice implementation on Intel Core2
processor. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp.
121–134. Springer, Heidelberg (2007)

14. National Institute of Standards and Technology: Advanced Encryption Standard
(AES), FIPS 197, November 2001

15. Nishikawa, N., Iwai, K., Kurokawa, T.: High-performance symmetric block ciphers
on multicore CPU and GPUs. Int. J. Netw. Comput. 2(2), 251–268 (2012)

16. NVIDIA: CUDA GPUs. https://developer.nvidia.com/cuda-gpus
17. NVIDIA: CUDA Toolkit. https://developer.nvidia.com/cuda-toolkit
18. NVIDIA: GeForce 8800 GTX Specifications. http://www.nvidia.com/page/

geforce 8800.html
19. NVIDIA: GeForce GTX 285 Specifications. http://www.geforce.com/hardware/

desktop-gpus/geforce-gtx-285/specifications
20. NVIDIA: GeForce GTX 480 Specifications. http://www.geforce.com/hardware/

desktop-gpus/geforce-gtx-480/specifications
21. NVIDIA: Tesla C2050 Board Specifications. http://www.nvidia.com/docs/IO/

43395/Tesla C2050 Board Specification.pdf
22. NVIDIA: Next Generation CUDA Compute Architecture: Fermi, v1.1. (2009)
23. NVIDIA: Parallel Thread ISA, Version 2.3 (2011)
24. NVIDIA: CUDA C Programming Guide, Version 6.5, August 2014
25. OpenSSL Group: The OpenSSL Project. http://www.openssl.org
26. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the

case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

27. Rebeiro, C., Selvakumar, D., Devi, A.S.L.: Bitslice implementation of AES. In:
Pointcheval, D., Mu, Y., Chen, K. (eds.) CANS 2006. LNCS, vol. 4301, pp. 203–
212. Springer, Heidelberg (2006)

28. Yamanouchi, T.: AES encryption and decryption on the GPU. GPU Gems 3, 785–
804 (2007)

https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-toolkit
http://www.nvidia.com/page/geforce_8800.html
http://www.nvidia.com/page/geforce_8800.html
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-285/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-285/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-480/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-480/specifications
http://www.nvidia.com/docs/IO/43395/Tesla_C2050_Board_Specification.pdf
http://www.nvidia.com/docs/IO/43395/Tesla_C2050_Board_Specification.pdf
http://www.openssl.org



