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Background
In the congruence a ≡ b mod n, the value n is themodulus.

Refer the more general entry on �modular arithmetic.

Monitoring

�Eavesdropping

Monotone Signatures

David Naccache
Département d’informatique, Groupe de cryptographie,
École normale supérieure, Paris, France

Related Concepts
�Blackmailing Attacks; �Digital Signatures

Definition
A monotone signature is a process allowing to resist, to
some extent, blackmailing attacks. A monotone signature
admits ℓ keys-pairs {pki, ski}. The scheme is such that a
signature s generated with ski is verifiable with respect to
all pkj for j ≤ i. Hence in case of blackmailing, the signer
can reveal the key ski and inform users that pki is obsolete
(switch to pki+). The legitimate signer always uses skℓ to
sign messages.

Recommended Reading
. Naccache D, Pointcheval D, Tymen C () Monotone signa-

tures. In: Syverson PF (ed) Financial cryptography. th Interna-
tional conference, FC , Grand Cayman, British West Indies,
– Feb , Proceedings. Volume  of Lecture notes in
computer science, pp –, Springer
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Related Concepts
�Modular Arithmetic; �Modular Exponentiation

Definition
Suppose a machine performs arithmetic on words of w
bits. Let a, b, and n be cryptographically sized integers
represented using s such words. Then the Montgomery
modular product of a and b modulo n is abr− (mod n)

where r = sw. This is computed at a word level using a
particularly straightforward and efficient algorithm. Com-
pared with the normal “school book” method, for each
word of the multiplier the reduction modulo n is per-
formed by adding rather than subtracting a multiple of
n, only a single digit is used to decide on this multi-
ple, and the accumulating product is shifted down rather
than up.

Background
The modular reduction u (mod n) is typically com-
puted on a word-based machine by repeatedly taking sev-
eral leading digits from u and n, obtaining the leading
digit of their quotient, and using that multiple of n to
reduce u. This takes a number of clock cycles on a gen-
eral processor, and the machine has to wait for carries
to propagate from lowest to highest word before the next
iteration can take place. Peter Montgomery designed his
algorithm [] to simplify or avoid these bottlenecks so
that the modular exponentiations typical of public key
cryptography could be significantly speeded up. The con-
sequent initial and final scalings by a power of r are rel-
atively cheap. Resource-constrained environments such
as those in a smart card or RFID device benefit par-
ticularly from the choice of this modular multiplication
algorithm.

Theory

Introduction
In , P. L. Montgomery introduced an efficient algo-
rithm [] for computing u = a ⋅ b (mod n), where a,
b, and n are k-bit binary numbers. The algorithm is par-
ticularly suitable for implementation on general-purpose
computers (signal processors or microprocessors) which
are capable of performing fast arithmetic modulo a power
of . The Montgomery reduction algorithm computes the
resulting k-bit number u without performing a division
by the modulus n. Via an ingenious representation of the
residue class modulo n, this algorithm replaces division
by n with division by a power of . The latter operation
is easily accomplished on a computer since the numbers
are represented in binary form. Assuming the modulus
n is a k-bit number, i.e., k− ≤ n < k, let r be k.
The Montgomery reduction algorithm requires that r and
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n be relatively prime, i.e., gcd(r,n) = gcd(k,n) = .
This requirement is satisfied if n is odd. In the follow-
ing, the basic idea behind the Montgomery reduction
algorithm is summarized.

Given an integer a < n, define its n-residue or Mont-
gomery representationwith respect to r as

a = a ⋅ r (mod n).

It is straightforward to show that the set

{i ⋅ r (mod n) ∣  ≤ i ≤ n − }

is a complete residue system, i.e., it contains all num-
bers between  and n − . Thus, there is a one-to-one
correspondence between the numbers in the range 
and n− and the numbers in the above set. The Mont-
gomery reduction algorithm exploits this property by
introducing a much faster multiplication routine which
computes the n-residue of the product of the two inte-
gers whose n-residues are given. Given two n-residues a
and b, the Montgomery product is defined as the scaled
product

u = a ⋅ b ⋅ r− (mod n)

where r− is the (multiplicative) inverse of r modulo n
(see �Modular Arithmetic), i.e., it is the number with the
property

r− ⋅ r =  (mod n).

As the notation implies, the resulting number u is indeed
the n-residue of the product

u = a ⋅ b (mod n)

since

u = a ⋅ b ⋅ r− (mod n)

= (a ⋅ r) ⋅ (b ⋅ r) ⋅ r− (mod n)

= (a ⋅ b) ⋅ r (mod n).

In order to describe theMontgomery reduction algorithm,
an additional quantity n′ is needed.This is the integer with
the property

r ⋅ r− − n ⋅ n′ = .

The integers r− and n′ can both be computed by the
extended Euclidean algorithm []. The Montgomery prod-
uct algorithm, which computes

u = a ⋅ b ⋅ r− (mod n)

given a and b, is given below:

functionMonPro(a, b)

Step . t := a ⋅ b
Step .m := t ⋅ n′ (mod r)
Step . u := (t + m ⋅ n)/r
Step . if u ≥ n then return u − n

else return u

The most important feature of the Montgomery product
algorithm is that the operations involved are multiplica-
tions modulo r and divisions by r, both of which are intrin-
sically fast operations since r is a power . The MonPro
algorithm can be used to compute the (normal) product
u of a and bmodulo n, provided that n is odd:

functionModMul(a, b,n) {n is an odd number}

Step . Compute n′using the extendedEuclidean algorithm.
Step . a := a ⋅ r (mod n)

Step . b := b ⋅ r (mod n)

Step . u := MonPro(a, b)

Step . u := MonPro(u, )
Step . return u

A better algorithm can be given by observing the property

MonPro(a, b) = (a ⋅ r) ⋅ b ⋅ r− = a ⋅ b (mod n),

which modifies the above algorithm to:

functionModMul(a, b,n) {n is an odd number}

Step . Compute n′using the extendedEuclidean algorithm.
Step . a := a ⋅ r (mod n)

Step . u := MonPro(a, b)

Step . return u

However, the preprocessing operations, namely, steps ()
and (), are rather time-consuming, especially the first.
Since r is a power of , the second step can be done using
k repeated shift and subtract operations. Thus, it is not a
good idea to use the Montgomery product computation
algorithm when a single modular multiplication is to be
performed.

Montgomery Exponentiation
TheMontgomery product algorithm ismore suitable when
several modular multiplications are needed with respect
to the same modulus. Such is the case when one needs to
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compute a modular exponentiation, i.e., the computation
of Me

(mod n). Algorithms for modular exponentiation
decompose the operation into a sequence of squarings and
multiplications using a common modulus n. This is where
the Montgomery product operation MonPro finds its best
use. In the following, modular exponentiation is exem-
plified using the standard “square-and-multiply” method,
i.e., the left-to-right binary exponentiation method, with ei
being the bit of index i in the k-bit exponent e:

functionModExp(M, e,n) {n is an odd number}

Step . Computen′using the extendedEuclidean algorithm.
Step .M := M ⋅ r (mod n)

Step . x :=  ⋅ r (mod n)

Step . for i = k −  down to  do
Step . x := MonPro(x, x)

Step . if ei =  then x := MonPro(M, x)

Step . x := MonPro(x, )
Step . return x

Thus, the process starts with obtaining the n-residues
M and  from the ordinary residuesM and  using division-
like operations, as described above. However, once this
preprocessing has been completed, the inner loop of
the binary exponentiation method uses the Montgomery
product operation, which performs only multiplications
modulo k and divisions by k. When the loop terminates,
the n-residue x of the quantity x = Me

(mod n) has
beenobtained.The ordinary residue number x is recovered
from the n-residue by executing theMonPro function with
arguments x and . This is easily shown to be correct since

x = x ⋅ r (mod n)

immediately implies that

x = x ⋅ r− (mod n) = x ⋅  ⋅ r− (mod n) := MonPro(x, ).

The resulting algorithm is quite fast, as was demon-
strated by many researchers and engineers who have
implemented it; for example, see [, ]. However, this algo-
rithm can be refined and made more efficient, particularly
when the numbers involved are multi-precision integers.
For example, Dussé and Kaliski [] gave improved algo-
rithms, including a simple and efficient method for com-
puting n′. In fact, any exponentiation algorithm can be
modified in the same way to make use of MonPro: sim-
ply append the illustrated pre- and postprocessing (steps
– and ) and replace the normal modular multiplica-
tion operations in the iterative loop with applications of

MonPro to the corresponding n-residues (steps – in the
above).

Here, as an example, the computation of x=m

(mod ) is illustrated using theMontgomery binary expo-
nentiation algorithm.

● Since n = , the value for r is taken to be
r =  =  > n.

● Step  of the ModExp routine: Computation of n′:
The extended Euclidean algorithm is used to determine
that  ⋅  −  ⋅  = , and thus r− =  and n′ = .

● Step : Computation ofM:
SinceM = ,M := M ⋅ r (mod n) =  ⋅  (mod ) = .

● Step : Computation of x for x = :
x := x ⋅ r (mod n) =  ⋅  (mod ) = .

● Step : The loop of ModExp:

ei Step  Step 

 MonPro(, ) =  MonPro(, ) = 

 MonPro(, ) = 

 MonPro(, ) =  MonPro(, ) = 

 MonPro(, ) = 

– Step : Computation of MonPro(, ) = :
t :=  ⋅  = 
m :=  ⋅  (mod ) = 
u := ( +  ⋅ )/ = / = 

– Step : Computation of MonPro(, ) = :
t :=  ⋅  = 
m :=  ⋅  (mod ) = 
u := ( +  ⋅ )/ = / = 

– Step : Computation of MonPro(, ) = :
t :=  ⋅  = 
m :=  ⋅  (mod ) = 
u := ( +  ⋅ )/ = / = 

– …
● Step  of the ModExp routine: x = MonPro(, ) = 

t :=  ⋅  = 
m :=  ⋅  (mod ) = 
u := ( +  ⋅ )/ = / = 

Thus, x =  is obtained as the result of the operation
 (mod ).

EfficientMontgomeryMultiplication
The previous algorithm for Montgomery multiplication is
not efficient on a general purpose processor in its stated
form, and so perhaps only has didactic value. Since the
Montgomery multiplication algorithm computes

MonPro(a, b) = abr− (mod n)
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and r = k, it is possible to give a more efficient bit-level
algorithm which computes exactly the same value

MonPro(a, b) = ab−k (mod n)

as follows:

functionMonPro(a, b) {n is odd and a, b,n < k}

Step . u := 
Step . for i =  to k − 
Step . u := u + aib
Step . u := u + un
Step . u := u/
Step . if u ≥ n then return u − n

else return u

where u is the least significant bit of u and ai is the bit
with index i in the binary representation of a. The oddness
of n guarantees that the division in step () is exact. This
algorithm avoids the computation of n′ since it proceeds
bit-by-bit: it needs only the least significant bit of n′, which
is always  since n′ is odd because n is odd.

The equivalent word-level algorithm only needs the
least significant word n′ (w bits) of n′, which can also be
easily computed since

k ⋅ −k − n ⋅ n′ = 

implies
−n ⋅ n′ =  (mod w).

Therefore, n′ is equal to −n− (mod w), and it can be
quickly computed by the extended Euclidean algorithm
or table lookup since it is only w bits ( word) long. For
the words (digits) ai of a with index i and k = sw, the
word-level Montgomery algorithm is as follows:

functionMonPro(a, b) {n is odd and a, b,n < sw}

Step . u := 
Step . for i =  to s − 
Step . u := u + aib
Step . u := u + (−n− ) ⋅ u ⋅ n
Step . u := u/w

Step . if u ≥ n then return u − n
else return u

This version ofMontgomery multiplication is the algo-
rithm of choice for systolic array modular multipliers []
because, unlike classical modular multiplication, comple-
tion of the carry propagation required in Step  does not
prevent the start of Step , which needs u from Step .

Such systolic arrays are extremely useful for fast SSL/TLS
servers.

Application to Finite Fields
Since the integers modulo p form the finite field GF(p),
these algorithms are directly applicable for performing
multiplication in GF(p) by taking n = p. Similar algo-
rithms are also applicable for multiplication in GF(k),
which is the finite field of polynomials with coefficients in
GF() modulo an irreducible polynomial of degree k [].

Montgomery squaring (required for exponentiation)
just uses MonPro with the arguments a and b being the
same. However, in fields of characteristic , this is rather
inefficient: all the bit products aiaj for i ≠ j cancel, leaving
just the terms ai to deal with. Then it may be appro-
priate to implement a modular operation ab for use in
exponentiation.

Secure MontgomeryMultiplication
As a result of the data-dependent conditional subtraction
in the last step ofMonPro, embedded cryptosystemswhich
make use of the above algorithms can be subject to a tim-
ing attack which reveals the secret key []. In the context
of modular exponentiation, the final subtraction of each
MonPro should then be avoided []. With this step omit-
ted, all I/O to/from MonPro simply becomes bounded by
n instead of n, but an extra loop iterationmay be required
on account of the larger arguments [].
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Related Concepts
�Exhaustive Key Search; �Exponential Time;
�Polynomial Time

Definition
Moore’s Law states that the amount of computing power
available for a given cost will increase by a factor of two
every  months to  years.

Background
Moore’s Law was articulated in  by Gordon Moore of
Intel [].

Theory
The phenomenal rise in computing power over the past
half century – which has driven the increasing need for
cryptography and security as covered in this work – is due
to an intense research and development effort that has pro-
duced an essentially exponential increase in the number
of transistors than can fit on a chip, while maintaining a
constant chip cost.

Roughly speaking, the amount of computing power
available for a given cost has increased and continues to
increase by a factor of  every  months to  years, a pat-
tern called Moore’s Law after Gordon Moore of Intel, who
first articulated this exponential model. More specifically,
the amount of computing power P(t) available for a given
cost at time t may be estimated as

P (t) = P (t) (t−t)/T

where P(t) is the amount of computing power available
for the same cost at a reference time t, and T is the inter-
val between doublings in computing power (e.g., . or

 years). Lenstra and Verheul have formalized the treat-
ment such growth rates in their model for estimating the
strength of cryptographic key sizes over time [].

Applications
The implications of Moore’s Law to cryptography are two-
fold. First, the resources available to users are continu-
ally growing, so that users can readily employ stronger
and more complex cryptography. Second, the resources
available to opponents are also growing. Effectively, the
strength of any cryptosystem decreases by the equivalent
of one symmetric-key bit every  months – or  bits
every  years – posing a challenge to long-term security.
This long-term perspective on advances in (classical) com-
puting is one motivation for the large key sizes cur-
rently being proposed for many cryptosystems, such as the
Advanced Encryption Standard (�Rijndael/AES), which
has a -bit symmetric key.

The benefit of Moore’s Law to users of cryptography
is much greater than the benefit to opponents, because
even a modest increase in computing power has a much
greater impact on the key sizes that can be used, than on
the key sizes that can be broken. This is a consequence of
the fact that the methods available for using cryptosystems
are generally �polynomial time, while the fastest meth-
ods known for breaking �symmetric cryptosystems and
several asymmetric cryptosystems are �exponential time.

This contrast between using and breaking algorithms
may well be limited to classical computing for current
algorithms. Quantum computers pose a more substantial
potential threat in the future, because methods have been
discovered for breaking �public-key cryptosystems based
on integer factorization or the discrete logarithm prob-
lem in�polynomial time on such computers []. Quantum
computers themselves are still in the research phase, and
it is not clear if and when a sufficiently large quantum
computer could be built. But if one were built (perhaps
sometime in the next  years?), the impact on cryptog-
raphy and security would be even more dramatic than the
one Moore’s Law has had so far.
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