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Synonyms
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Related Concepts
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Definition
Modular arithmetic is almost the same as the usual arith-
metic of whole numbers.The main difference is that oper-
ations involve remainders after division by a specified
number (themodulus) rather than the integers themselves.

Background
Modular arithmetic is a key ingredient of many pub-
lic key cryptosystems. It provides finite structures (called
“rings”) which have all the usual arithmetic operations of
the integers and which can be implemented without dif-
ficulty using existing computer hardware. An important
property of these structures is that they appear to be ran-
domly permuted by operations such as exponentiation,
but the permutation is often easily reversed by another
exponentiation. For suitably chosen cases, these operations
enable encryption and decryption or signature generation
and verification. Direct applications include RSA public-
key encryption and the RSA digital signature scheme [],
ElGamal public key encryption and the ElGamal digital sig-
nature scheme [], the Fiat-Shamir signature scheme [], the
Schnorr Identification Protocol [], andDiffie-Hellman key
agreement [].

Modular arithmetic is also used to constructfinite fields
and in tests during prime generation [] (�Probabilistic
Primality Test). Several copies of the modular structures
form higher dimensional objects in which lines, planes,
and curves can be constructed. These can be used to
perform elliptic curve cryptography (ECC) [, ] and to
construct threshold schemes []. Additionally, modular
arithmetic is used in some hash functions and symmetric
key primitives. In many such cases, the modulus is implied
by the computer word size, but other times the modulus is
explicitly stated.

Theory

Introduction
There are many examples of modular arithmetic in every-
day life. It is applicable to almost any measurement of a
repeated, circular or cyclic process. Clock time is a typical
example: seconds range from  to  and just keep repeat-
ing, hours run from  to  (or ) and also keep repeat-
ing, days run from Sunday (, say) to Saturday (, say).
These are examples of arithmetic modulo ,  (or ),
and , respectively.Measuring angles in degrees uses arith-
metic modulo .

To understand arithmetic in modulus N , imagine a
line of length N units, where the whole number points
, . . . ,N −  are labelled. Now connect the two end points
of the line so that it forms a circle of circumferenceN . Per-
forming modular arithmetic with respect to modulus N
is equivalent to arithmetic with the marked units on this
circle.

An example for N =  is shown in Fig. . If one starts
at number  and moves  units forward, the number 
is reached. This is written  =  (mod ). Similarly,
one can walk backwards  units from  and end up at .
Hence, − =  (mod ). In this arithmetic, every  is
discarded. Equivalently, for any two numbersA andB such
that A = B (mod ),  divides the difference A − B.

Modular addition is the same as addition of units on
this circle. For example, if N =  and the numbers  and
 are added on this circle, the result is . This is because
if one starts at position  and moves ahead  units, posi-
tion  is reached. So four hours after  o’clock is  o’clock.
This is written + =  (mod ).The result is the remain-
der (or “residue”) after division by , i.e.,  +  = 
becomes −, namely .

The notation for modular arithmetic is almost iden-
tical to that for ordinary (integer) arithmetic. The main
difference is that most expressions and equations specify
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Modular Arithmetic. Fig.  Geometric viewof arithmeticmod-
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the modulus.Thus,

 =  (mod )

states that  and  represent the same element in a set
which is called the ring of residues mod . When the
modulus is clear, it may be omitted, as in

 ≡ 

The different symbol ≡ is needed because  and  are
not equal as integers. The equation (or “congruence”) is
read as “ is congruent to .” All the integers in the
set {. . . ,−,−, , , , . . .} represent the same residue
class (or congruence class) modulo  because they all give
the same remainder on division by , i.e the difference
between any two of them is a multiple of . In general, the
numbersA, A+N , A+ N , A+ N , … and A−N , A− N ,
A − N , … are all equivalent modulo N . Normally one
works with the least nonnegative representative of a class,
 in this case, because of the convenience of the unique
choice when equality is tested, and because it takes up
the least space. (Note that some programming languages
incorrectly implement the modular reduction of negative
numbers by failing to take proper account of the sign.
TheMicrosoftWindows calculator correctly reduces nega-
tives, but gives the greatest nonpositive value, namely, −
in the above example.)

Modular Arithmetic Operations
Addition, subtraction, and multiplication are performed
in exactly the same way as for integer arithmetic. Strictly
speaking, the arithmetic is performed on the residue
classes but, in practice, integers are picked from the respec-
tive classes, and they are worked with instead. Thus,

 ×  +  =  =  (mod )

In the expression on the left, the least nonnegative residues
have been selected for working with. The result, , then
requires a modular reduction to obtain a least nonnegative
residue. Any representatives could be selected to perform
the arithmetic. The answer would always differ by at most
a multiple of the modulus, and so it would always reduce
to the same value.

Hardware usually performs such reductions as fre-
quently as possible in order to stop results from overflow-
ing. Optimising integer arithmetic to perform modular
arithmetic is the subject of much research. Modular mul-
tiplication is one of the most important areas of value to
those implementing cryptographic functions; another is
modular exponentiation. Montgomery [] and Barrett []
have created the most widely used methods for modu-
lar multiplication (Montgomery Modular Arithmetic and
Barrett Reduction). Such operations make data-dependent

use of power. This makes their use in embedded cryp-
tosystems (e.g., smart cards) susceptible to attack through
timing variations [], compromising emanations [], and
differential power analysis [] (Timing Attack, RF Attack
and Smartcard Tamper Resistance). Secure implementa-
tion ofmodular arithmetic is therefore at least as important
as efficiency in such systems.

Addition, subtraction, andmultiplication behave in the
same way for residues as for integer arithmetic. The usual
identity, commutative and distributive laws hold, so that
the set of residue classes form a “ring” in the mathematical
sense, denoted ZN for modulusN . Thus,

● N ≡  (modN).
● A +  ≡ A (modN).
●  × A ≡ A (mod N).
● if A ≡ B (modN), then B ≡ A (mod N).
● if A ≡ B (mod N) and B ≡ C (mod N), then A ≡

C (mod N).
● if A ≡ B (mod N) and C ≡ d (mod N), then A + C ≡

B + d (mod N).
● if A ≡ B (mod N) and C ≡ d (mod N), then A × C ≡

B × d (mod N).
● A + B ≡ B + A (modN).
● A × B ≡ B × A (modN).
● A + (B + C) ≡ (A + B) + C (mod N).
● A × (B × C) ≡ (A × B) × C (mod N).
● A × (B + C) ≡ (A × B) + (A × C) (mod N).

However, division is generally a problem unless the
modulus is a prime. Since

 =  ×  =  ×  (mod )

it is clear that division by  (mod ) can produce more
than one answer; it is not uniquely defined. In fact, division
by (mod ) is not possible in some cases: x (mod )

always gives an even residue, so (mod ) cannot be
divided by . It can be shown that division byA (modN) is
always well-defined precisely whenA andN share no com-
mon factor, i.e., when they are co-prime. Thus, division by
 is possible in modulo , but not division by  or .

If  is divided by (mod ), the result is the multi-
plicative inverse of . Since  ×  =  (mod ),  is its
own inverse. Following the usual notation of real numbers,
this inverse is written −. For large numbers, the extended
Euclidean algorithm [] is used to compute multiplicative
inverses. More precisely, to find the inverse of A (mod N),
one inputs the pair A,N into the algorithm, and it outputs
X,Y such thatA×X+N ×Y = gcd(A,N), where gcd is the
greatest common divisor. If the gcd is , thenX is the inverse
of A (mod N). Otherwise, no such inverse exists.
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Modular exponentiation (�Exponentiation
Algorithms) is the main process in many of the cryp-
tographic applications of this arithmetic. The nota-
tion is identical to that for integers and real numbers.
CD

(mod N) is D copies of C all multiplied together
and reduced modulo N . As mentioned, the multiplica-
tive inverse is denoted by an exponent −. Then the usual
power laws, such as xA × xB = xA+B (mod N), hold in the
expected way.

When a composite modulus is involved, say N , it is
often easier to work modulo its factors. Usually a set of
co-prime factors of N is chosen such that the product is
N . Solutions to the problem for each of these factors can
then be pieced together into a solutionmoduloN using the
Chinese Remainder Theorem (CRT) []. Implementations
of the RSA cryptosystem which store the private key can
use CRT to reduce the workload of decryption by a factor
of .

An interesting aside is that the ring of integers mod-
ulo , i.e., Z, is just the usual set of whole numbers with
its normal operations of addition and multiplication: two
whole numbers which belong to the same residue class
must differ by a multiple of , and so have to be equal.

Multiplicative Groups and Euler’s ϕ Function
The numbers which are relatively prime to (or just “prime
to” for short) the modulus N have multiplicative inverses,
as noted above. So they form a group under multiplica-
tion. Consequently, each number X which is prime to N
has an ordermod N which is the smallest positive integer
n such thatXn

=  (modN).The Euler phi function ϕ gives
the number of elements in this group, and it is a multiple
of the order of each element. So Xϕ(N)

=  (mod N) for
X prime to N , and, indeed, Xkϕ(N)+

= X (mod N) for
such X and any k. This last is essentially what is known
as Euler’s Theorem. As an example, {, , , } is the set of
residues prime to . So these form a multiplicative group
of order ϕ() =  and  =  =  =  =  (mod ).
A special case of this result is Fermat’s “little” theorem
which states that XP−

=  (mod P) for a prime P and inte-
ger X which is not divisible by P. These are really the main
properties that are used in reducing the cost of exponentia-
tion in cryptosystems and in probabilistic primality testing
(�Miller-Rabin Probabilistic Primality Test) [, ].

When N = PQ is the product of two distinct primes P
andQ, ϕ(N) = (P−)(Q−). RSA encryption on plaintext
M is performed with a public exponent E to give cipher-
text C defined by C = ME

(mod N). Illustrating this with
N = , M =  and E = , the computation is C ≡

 ≡ () ×  ≡  ×  ≡  ×  ≡ ×  ≡ × 
≡  ≡  (mod ). The private decryption exponent
D must have the property that M = CD

(mod N), i.e.,

MDE
= M (mod N). From the above, the value of Dmust

satisfy DE = kϕ(N) +  for some k, i.e., D is a solution
to DE ≡  mod (P−)(Q−). A solution is obtained using
the Euclidean algorithm []. For the example, D =  since
ϕ() =  and DE ≡ ×  ≡  (mod ). So M ≡  ≡

() ×  ≡  ×  ≡  ×  ≡  ≡  (mod ), as
expected. RSA chooses moduli which are products of two
(large) primes so that decryptionworks also for textswhich
are not prime to themodulus. A nice exercise for the reader
is to prove that this is really true. CRT is useful in the proof.

Prime Fields
When the modulus is a prime P, every residue except 
is prime to the modulus. Hence, every nonzero number
has a multiplicative inverse. So residues mod P form a
field with P elements, written FP or GF(P). These prime
fields are examples of finite fields []. The smallest such
field is F which contains the two values  and . Because
every nonzero has an inverse, the arithmetic of these fields
is similar in many ways to that of the real numbers, and
it is possible to perform similar geometric constructions.
They already form a very rich source for cryptography,
such as Diffie-Hellman key agreement [] and elliptic curve
cryptography [, ], and will undoubtedly form the basis
for many more cryptographic primitives in the future.
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Related Concepts
�Euler’s Totient Function; �Integer Factoring; �Modular
Arithmetic;�NumberTheory;�QuadraticResidue;�RSA
Problem

Definition
In the congruence xe ≡ y mod n, x is said to be the eth

modular root of y with respect to modulus n.

Background
The cases that are of interest to cryptography have
gcd(x,n) = gcd(y,n) = . Algorithms for finding
modular roots are relevant to the security of the �RSA
cryptosystem.

Theory
Computingmodular roots is nomore difficult than finding
the order of the multiplicative group modulo n. In num-
ber theoretic terminology, this value is known as �Euler’s
totient function, ϕ(n), which is defined to be the number
of integers in {, , . . . ,n − } that are �relatively prime
to n. If gcd(e, ϕ(n)) = , then there is either one or zero
solutions, depending upon whether y is in the multiplica-
tive�subgroup generated by x. Assuming it is, the solution
is obtained by raising both sides of the congruence to the
power e− mod ϕ(n). If the gcd condition is not , then
there may be more than one solution. For example, con-
sider the special case of e =  and n an odd integer larger
than . The congruence can have solutions only if y is a
�quadratic residue modulo n. Furthermore, if x is one
solution, then−x is another, implying that there are at least
two distinct solutions.

Open Problems
Computing modular roots is easy when n is prime since
then ϕ(n) = n − . The more interesting case is when
n is composite, where it is known as the �RSA problem.
An important open question is whether a method exists
for computing modular roots faster than �integer factor-
ing. Note that any method which finds ϕ(n) cannot be
faster than factoring since determining ϕ(n) is provably
as difficult as factoring n.

Modulus

Scott Contini
Silverbrook Research, New South Wales, Australia

Related Concepts
�Modular Arithmetic; �NumberTheory

Definition
In �modular arithmetic, the operand that the mod opera-
tion is computed with respect to is known as the modulus.
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