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The spread of wired and wireless communications, the continuous growth of

the Internet, and the E-commerce transactions increased the necessity for

security in applications that involve sharing or exchange of secret or private

information. Public-key cryptography is widely used in establishing secure

communication channels between the users on the Internet and in wireless

communication networks.

5.1 INTRODUCTION

A small set of public-key cryptosystems are used extensively, which includes

ElGamal cryptosystem [1], Diffie–Hellman (DH) key exchange algorithm [2],

the digital signature algorithm (DSA) [3], and elliptic curve cryptography–

based algorithms such as EC–ElGamal and ECDSA. Elliptic curve crypto-

graphy (ECC), which was introduced by Miller [4] and Koblitz [5], is based

on a more difficult mathematical problem to solve than the one used in

traditional public-key algorithms. Thus, ECC stands out from this crowd of

algorithms because of its unique property of providing the highest degree of

security with the smallest key sizes. For example, an elliptic curve system

with 313-bits can replace a certain 4096-bit key size conventional system [6].

Using smaller key sizes to gain the same level of security leads to a big

reduction in hardware resources used in implementations.

In this chapter, we mainly concentrate on efficient hardware realization of

elliptic curve cryptography for wireless applications. Elliptic curve crypto-

graphy involves huge arithmetic operations performed over finite fields (most

commonly used fields are the prime extension fields, GF(p), and the binary

extension fields, GF(2n)), and therefore, an efficient ECC system requires

efficient hardware implementations of finite field operations. Once realized,

similar hardware can also be used to support other public-key cryptographic

functions. Furthermore, long-term deployment of public-key cryptography

hardware requires flexibility in key size as better cryptanalytic techniques

are developed.

Recently, two important developments took place in this area. The first

one is called scalability which refers to the ability of the hardware to

reconfigure itself to support longer key sizes, limited only by the amount of

available input, output, and scratch memory space. The second one is about

designing a single hardware to support all kinds of elliptic curves based on

finite fields of different characteristics. This property of hardware is called

unified or dual field.

Our research starts from these premises and moves on to create better

algorithms to support long-term, efficient, scalable, and unified hardware

implementations. We address and provide solutions for dual-field Montgom-

ery multipliers, modular dividers, and unified dividers and inverters. Particu-

larly, we introduce a novel algorithm suitable for hardware design which

computes division (inverse) and multiplication in a very efficient way for
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GF(p) and GF(2n) fields. The new algorithm is called the unified

division=multiplication algorithm (UDMA). In addition, we propose the

hardware architecture that efficiently supports all operations in the UDMA

and uses carry-save unified adders for reduced critical path delay, making the

proposed architecture faster than other previously proposed designs. We

present example designs of our algorithms using field programmable gate

arrays (FPGAs) and the benchmark results of our implementations.

At the end of this chapter, we introduce an elliptic curve crypto-processor

(ECCP) architecture over GF(2n) that is based on the efficient UDMA hard-

ware implementation. The scalability feature of the proposed crypto-

processor allows the adjustment of the word size used in the datapath to

meet area and performance requirements. On the other hand, the processor

allows the user to choose the value of the field parameter (n). Finally, the

experimental results obtained for the ECCP are analyzed and compared with

other proposed designs.

5.2 ELLIPTIC CURVE THEORY

In the mid-1980s, Niel Koblitz and Victor Miller proposed the elliptic curve

cryptography (ECC) [4,5]. It is based on the discrete logarithm (DL) problem

over the points on an elliptic curve (EC). Recently, the elliptic curve crypto-

systems started to replace many known conventional public-key cryptography

algorithms. This is due to the high level of security they provide and their fast

and compact size implementations over finite fields.

Data in an ECC are represented as points on an elliptic curve. They

are called elliptic because they arose historically from the problem of

computing the solutions for an equation of an ellipse. These curves

have special characteristics and provide the base for particular arithmetic

operations.

In cryptography, we are interested in the elliptic curves defined over finite

fields. In other words, the coefficients of the defining equation (F(x,y)¼ 0)

are elements of GF(q), and the points on the curve are of the form P¼ (x,y),

where x and y are the elements of GF(q) that satisfy the equation. The general

form for an elliptic curve equation is

y2 þ axyþ by ¼ x3 þ cx2 þ dxþ e:

A point at infinity (O) is also defined [7]. O plays a role similar to zero in

ordinary addition. It is computed as the sum of three points that lie on a

straight line on the EC.

The complexity of elliptic curve arithmetic operations that includes rules

used to add two points (point addition) or add a point to itself (point doubling)

on the elliptic curves, depends on the finite field (GF(p) or GF(2n)) and on the

coordinate system (affine or projective) that is used. Moreover, choosing the
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suitable representation for the elements of the finite field may lead to more

efficient implementations of the field arithmetic in hardware or in software.

The core operation on ECC is the scalar point multiplication, which

consists of a certain number of point additions. When a point P defined on

the curve is added to itself k times, it is very difficult to find what was

P without knowing k. That is the characteristic that provides security to ECC:

Q ¼ kP ¼ Pþ Pþ � � � þ P|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
k times

: (5:1)

In the following subsections, we discuss the elliptic curves defined over

GF(p) and GF(2n) and the arithmetic algorithms defined in each field.

5.2.1 ELLIPTIC CURVES DEFINED OVER GF(P)

The elements of the field GF(p) are the integers in the set {0, 1, 2, . . . , p� 1},

where p is an n-bit prime modulus in the range of 2n�1< p< 2n. The basic

arithmetic operations defined in this field are

. Addition modulo p. The addition of elements in a prime field is a

conventional integer addition with modulo reduction (mod p). For

example, let X, Y, R 2 GF(p), then R¼Xþ Y mod p, where R is the

remainder of (Xþ Y ) divided by p.
. Multiplication modulo p. Let M¼X � Y, where X, Y, M 2 GF(p), M is

the remainder of X � Y divided by p.
. Squaring. If X 2 GF(p), then X2¼X �X is the remainder of X2 divided

by p.
. Inversion modulo p. Inversion is defined for a nonzero element X 2

GF(p) as X�1 to be the unique integer W 2 GF(p), such that X �W � 1

mod p.

The elliptic curves defined over GF(p) satisfy the following equation:

y2 ¼ x3 þ axþ b mod p,

where p> 3, 4a3þ 27b2 6¼ 0 and x, y, a, b 2 GF(p). As mentioned earlier, the

point at infinity O plays a role similar to zero in the integer domain. But, there

are some addition rules for O in this field. Assume that (x, y) is a point on an

EC, then

1. (x, y)þO¼ (x, y).

2. (x, y)þ (x,�y)¼O.

3. O¼�O.
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The points on the curves can be represented using affine or projective

coordinates. A brief description of each coordinate is given in the following

sections.

5.2.1.1 Affine Coordinates

To add two points on an elliptic curve represented in affine coordinates

as P1¼ (x1, y1) and P2¼ (x2, y2), we compute P3¼ (x3, y3)¼P1þP2 and

P1 6¼ P2 According to the addition rules,

a ¼ y2 � y1

x2 � x1

,

x3 ¼ a2 � x1 � x2,

y3 ¼ a(x1 � x3)� y1,

and when P1¼P2 (point doubling P3¼ 2P1 and P1 6¼ 0), the addition rules are

a ¼ 3x2
1 þ a

2y1

,

x3 ¼ a2 � 2x1,

y3 ¼ a(x1 � x3)� y1:

If we assumed that the squaring calculation is equivalent to a multiplication,

then the addition of two different points in GF(p) requires: six additions, one

inversion, and three multiplication operations. On the other hand, to add a

point to itself (point doubling) a total of four additions, one inversion, and

four multiplications are required [8].

5.2.1.2 Projective Coordinates

Adding or doubling points represented in affine coordinates involve modular

inversion calculations. The inversion is considered a time-consuming oper-

ation. The projective coordinates are used to almost eliminate the need for

performing inversion [8].

The elliptic point, P1¼ (x, y) defined over GF(p), is represented in

the projective coordinates as (X, Y, Z), where x¼X=Z2 and y¼ Y=Z3. This

transformation is performed at the beginning to represent the point in

projective coordinates. After performing the point addition operation, this

transformation is carried out again to get the point back in affine coordin-

ates. Algorithm 1 is used to add two points (PþQ, P 6¼ Q) in projective

coordinates:
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P ¼ (X1, Y1, Z1); Q ¼ (X2, Y2, Z2); Pþ Q ¼ (X3, Y3, Z3)

(x, y) ¼ (X=Z2, Y=Z3),

T1 ¼ X1Z2
2,

T2 ¼ X2Z2
1,

T3 ¼ T1 � T2,

T4 ¼ Y1Z3
2,

T5 ¼ Y2Z3
1,

T6 ¼ T4 � T5,

T7 ¼ T1 þ T2,

T8 ¼ T4 þ T5,

Z3 ¼ Z1Z2T3,

X3 ¼ T2
6 � T7T2

3 ,

T9 ¼ T7T2
3 � 2X3,

Y3 ¼
T9T6 � T8T3

3

2
:

The doubling point algorithm (PþP) in projective coordinates is given by

P ¼ (X1, Y1, Z1); Pþ P ¼ (X3, Y3, Z3)

(x, y) ¼ (X=Z2, Y=Z3),

T1 ¼ T3X2
1 þ aZ4

1,

Z3 ¼ 2Y1Z1,

T2 ¼ 4X1Y2
1 ,

X3 ¼ T2
1 � 2T2,

T3 ¼ 8Y4
1 ,

T4 ¼ T2 � X3,

Y3 ¼ T1T4 � X3:

From these algorithms, we found that the number of multiplication operations

needed to add 2 points is 16, whereas the number of multiplications for

doubling a point is found to be only 10 [8].

5.2.2 ELLIPTIC CURVES DEFINED OVER GF(2n)

The elliptic curves defined over GF(2n) satisfy the equation

E: y2 þ xy ¼ x3 þ ax2 þ b,
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where a,b 2 GF(2n) and b 6¼ 0. The addition law for two points in affine

coordinates involves multiplication, division, and squaring in the underlying

finite field.

5.2.2.1 Affine Coordinates

Adding two points in the affine coordinates can be achieved as follows: let

P1¼ (x1, y1) and P2¼ (x2, y2) be two points defined on the curve; then

P3¼ (x3, y3)¼P1þP2 is defined when P1 6¼ P2 as

a ¼ y1 þ y2

x1 þ x2

,

x3 ¼ a2 þ aþ x1 þ x2 þ a,

y3 ¼ (x1 þ x3)aþ x3 þ y1,

and when P1¼P2 (point doubling) as

a ¼ x1 þ
y1

x1

,

x3 ¼ a2 þ aþ a,

y3 ¼ (x1 þ x3)aþ x3 þ y1:

5.2.2.2 Projective Coordinates

To eliminate the need for performing inversion in GF(2n), the affine coord-

inates (x, y) are projected to (X, Y, Z), where x¼X=Z2 and y¼ Y=Z3 [8]. The

point doubling algorithm (PþP) in projective coordinates is given by

P ¼ (X1, Y1, Z1); Pþ P ¼ (X3, Y3, Z3),

Z3 ¼ X1Z2
1,

X3 ¼ (X1 þ bZ2
1)4,

T ¼ Z3 þ X2
1 þ Y1Z1,

Y3 ¼ X4
1Z3 þ TX3:

On the other hand, the point addition of two elliptic curve points (PþQ),

where P 6¼ Q, is given by

P ¼ (X1, Y1, Z1); Q ¼ (X2, Y2, Z2); Pþ Q ¼ (X3, Y3, Z3),

(x,y) ¼ (X=Z2, Y=Z3),

T1 ¼ X1Z2
2,
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T2 ¼ X2Z2
1,

T3 ¼ T1 þ T2,

T4 ¼ Y1Z3
2,

T5 ¼ Y2Z3
1,

T6 ¼ T4 þ T5,

T7 ¼ Z1T3,

T8 ¼ T6X2 þ T7Y2,

Z3 ¼ T7Z2,

T9 ¼ T6 þ Z3,

X3 ¼ aZ2
3 þ T6T9 þ T3

3 ,

Y3 ¼ T9X3 þ T8T2
7 :

When using GF(2n), the number of multiplication processes for adding

2 points is found to be 20, whereas it is found to be 10 for doubling a point.

5.2.3 ARITHMETIC COMPLEXITY OF AFFINE AND PROJECTIVE COORDINATES

A research was carried out by Gutub [8] to evaluate the complexity of

performing arithmetic operations in affine and projective coordinates, and

in both finite fields (GF(p) and GF(2n)). The research was based on using the

binary algorithm to compute kP from a given point P on the elliptic curve.

Assuming that k is n-bits, then the algorithm performs exactly n point

doubling. To evaluate the average point additions, we assume that k has

half ones and half zeros. This results in n=2 point additions.

Table 5.1 shows the total number of multiplications and inversions for

both GF(p) and GF(2n) needed to perform n point doubling and n=2 point

additions. The table indicates that for an affine coordinates system to be faster

than a projective system, the time to compute 1.5n inversions and 5.5n
multiplications should be less than 18n, GF(p) multiplications or 20n,

GF(2n) multiplications. But, it is worth mentioning that even using projective

coordinates did not eliminate the inversion step completely. It is still required

at the end of the computations to convert the result back to affine coordinates.

This fact motivates the research for efficient hardware implementations for

the inverse operation.

TABLE 5.1
Comparison between Affine and Projective Coordinates

Finite Field Affine Coordinates Operations Projective Coordinates Operations

GF( p) 1.5n inversions, 5.5n multiplications 18n multiplications

GF(2n) 1.5n inversions, 5.5n multiplications 20n multiplications
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5.3 ELLIPTIC CURVE CRYPTOSYSTEMS

Computing kP from the point p can be carried out easily using the algorithms

mentioned in the earlier sections, based on which field and coordinates are

used. Now, computing the value of k from the points kP and P is very hard. This

fact is used to build many elliptic curve–based cryptosystems and techniques.

To change conventional systems that are based on DL problem [9] into an

elliptic curve system, the following two rules are applied:

. Any modular multiplication operation defined in the conventional

system is replaced by the addition of points on the elliptic curve version.
. Any modular exponentiation operation is replaced by point multipli-

cation on the elliptic curve version of the conventional system.

There are many conventional systems that can be transferred to elliptic curve

systems. As an example, we mention the elliptic curve digital signature

algorithm (ECDSA) and the elliptic curve ElGamal cryptosystem (ECEC).

5.3.1 ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM

The process of ECDSA is composed of three main steps: key generation, sign-

ature generation, and signature verification. Each step is described as follows.

5.3.1.1 ECDSA Key Generation

The following procedure shows how the users should generate the public and

the private keys:

1. Choose an elliptic curve E over a finite field, GF(p), for example.

Assume that n is a large prime, then the number of points on E should

be divisible by n.

2. Choose a point P¼ (x, y) 2 GF(p) of order n (see [6] for more

information about the order).

3. Choose randomly an integer d 2 [1, n� 1].

4. Compute Q¼ dP.

5. The public keys for the users are (Q, n, P, E), and the private key is d.

5.3.1.2 ECDSA Signature Generation

The following steps describe how to generate a signature for a certain

message m:

1. Choose k to be a random integer 2 [1, n� 1].

2. Compute kP¼ (x1, y1), and set x1 mod n¼ r. If r is zero then go back

to step 1.
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3. Compute k�1 mod n.

4. Compute s¼ k�1 (H(m)þ dr) mod n, where H(m) is the hash value of

the message m obtained using a suitable hash function.

5. If s¼ 0, go to step 1. This is because s�1 mod n does not exist, and the

signature cannot be verified.

6. The pair of integers (s, r) is included in the message m as a signature.

5.3.1.3 ECDSA Signature Verification

The last step is to verify the signature (s, r) on the message m, which is

executed as follows:

1. Obtain an authentic copy of the public key (Q, n, P, E).

2. Make sure that the integers r and s 2 [1, n� 1].

3. Compute w¼ s�1 mod n and H(m).

4. Compute u1¼H(m) �w mod n and u2¼ r �w mod n.

5. Compute u2Qþ u1P¼ (x0, y0) and v¼ x0 mod n.

6. If r¼ v, the signature is accepted, otherwise it is not verified.

To reduce the public-key size (Q, n, P, E), the users can agree on a fixed curve

E and a base point P as system parameters, instead of generating different E
and P for each user. After that, each user defines only the point Q.

5.3.2 ELLIPTIC CURVE ELGAMAL CRYPTOSYSTEM

First, we describe the conventional version of the ElGamal algorithm intro-

duced by ElGamal [1]. If Alice has to send a message m to Bob, Bob needs to

have both public and private keys. Bob selects a large prime p, an integer i

mod p, and a secret integer a. He computes v ¼ ia mod p. The public key for

Bob consists of (p, i, v), whereas his private key is a. Now, to encrypt the

message m, Alice chooses a random integer n and computes xB, yB such that

xB � in, yB � mvn(mod p):

After that, xB and yB are sent to Bob to be decrypted. The decryption process

is carried out by computing

m � yBxa
B(mod p):

On the other hand, the ElGamal elliptic curve version can be described as

follows: first, Bob selects an elliptic curve E mod p, a point i on E, and a

secret integer a. He computes

v ¼ ai:
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The public key consists of the two points i and v. The secret key is the integer

a. The message m is translated into a point on E by Alice. Then she chooses a

random integer n and computes

xB ¼ ni and yB ¼ mþ nv:

Then she sends xB and yB to Bob. Finally, the decryption is done by computing

m ¼ yB � axB:

5.4 SCALABLE HARDWARE DESIGN FOR ELLIPTIC
CURVE CRYPTOGRAPHY

The main operation in elliptic curve cryptography is to compute the point

multiplication that consists of point additions and point doubling. As dis-

cussed earlier, computing point multiplication involves huge arithmetic

operations done over the finite fields (mostly GF(p) and GF(2n)), and therefore,

an efficient ECC system requires efficient hardware implementations of finite

field operations. The main two operations are modular multiplication and

modular division (inverse). The proposed elliptic curve hardware design has

the following two features:

1. computing point multiplication based on efficient implementation of

UDMA and

2. meeting the most required two features of any efficient hardware

design: being scalable and unified.

In the following subsections, UDMA and its hardware implementation are

proposed.

5.4.1 UNIFIED DIVISION=MULTIPLICATION ALGORITHM

We use a novel algorithm (UDMA) [10] to compute Montgomery modular

multiplication (proved to be a very efficient modular multiplication method)

and modular division in GF(p) and GF(2n) finite fields. UDMA is presented

in Figure 5.1.

The UDMA mode of operation is controlled by input Op (div or mult), and

the finite field is controlled by the input field (GF(p) or GF(2n)). For

simplicity, the polynomials X(x), Y(x), and p(x) are denoted as X, Y, and p,

respectively, which correspond to the bit-vector representation of these

polynomials.

Most of the arithmetic operations in the algorithm are common to both

modes of operation. The initialization of variables depends on the operation.
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For a given field, all the additions or subtractions are done in the field, besides

the arithmetic operations on d (subtractions and change of sign) which are

always integer operations.

The algorithm integrates the extended binary GCD algorithm and the

Montgomery multiplication algorithm and it was verified using Maple. To

compute Montgomery multiplication using an n-bit modulus p, UDMA

performs n iterations. The counter d is initialized with value n, and in

each iteration it is decremented by 1. The variables used in the algorithm

are initialized as C¼ Y, D¼ 0, U¼ 0, and W¼X. The result is ready

(Z¼U), when d¼ 0. The partial product U is reduced mod p in each

iteration. In both fields, while multiplying, addition is used in the opera-

tions that update C and D(k¼ 1). The � operator indicates a 1-bit right

shift operation.

Function: Modular Division and Multiplication in GF (p) and GF (2n)

Inputs: 0 ≤ X < p, 0 < Y < p, 2n −1< p < 2n, Field, Op, n

Algorithm:
C = Y.

IF Op = mult THEN /∗ Multiplication Mode ∗/
D = 0, U = 0, W = X, d = n

ELSE /∗ Division Mode ∗/
D = p, U = X, W = 0, d = 0

END IF;
WHILE [(C ≠ 0 AND Op = div) OR (d ≠ 0 AND Op = mult)]

IF c0 = 0 THEN
C := C >> 1
d := d  − 1 /∗ Integer Operation ∗/

ELSE
k = 1
IF (Op = div) THEN

IF d < 0 THEN C ⇔ D, U ⇔W, d := −d END IF; /∗Swapping ∗/
IF((C + D) mod 4 ≠ 0 AND Field = GF (p))THEN k = −1
ELSE d :=  d − 1    END  IF;

d :=  d −1
ELSE /∗Op = mult ∗/

END IF;
C := (C + k  D) >> 1, U := (U + k ∗W )

END IF;
U := (U + u0 ∗ p) >> 1

END WHILE;
IF Op = div THEN Z := W ELSE Z := U
END IF;

Output: Z = XY2 −n mod p when Op = mult, Z = X
Y

mod p when Op = div.

∗

FIGURE 5.1 Unified modular division=multiplication algorithm (UDMA) for GF(p)

and GF(2n).
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UDMA computes modular division using the same structure used by the

extended binary GCD algorithm for modular division [11]. The variables are

initialized as C¼ Y, D¼ p, U¼X, W¼ 0, and d¼ 0. If the division is com-

puted in GF(p), UDMA tests the least significant 2-bits of C and D ((CþD)

mod 4 6¼ 0) to conditionally subtract C from D (set k¼�1). Otherwise, C is

always added to D in both fields. The division is completed when C¼ 0, and

the final result is available in W. For more details about the operation of

UDMA, the reader is referred to [10,12].

5.4.2 TOP LEVEL HARDWARE ARCHITECTURE IMPLEMENTING UDMA

Figure 5.2 shows the top level architecture of the unified modular divider or

multiplier (let us call it UMDM) that implements UDMA. The main func-

tional blocks are Register file, Datapath, and Control.

5.4.2.1 Register File

The register file has five registers (R1 to R5). As the computations are done in

carry-save form, each intermediate variable (C, U, D, W ) is represented in two

vectors (sum, carry). Therefore, the registers inside the register file are

designed to store two n-bit vectors. In other words, the ith register Ri is

represented as Ri¼ (sum, carry)¼ (Ris, Ric).

Control

UMDM datapathRegister  file

out1

src1src2

Load

Input
(X,Y,P )

Load

in

 Sum/carry

dst

out2

(2 Vectors)
2n

A
(2 Vectors)

2n

B
(2 Vectors)

2n

2 Vectors
2n

333

Y
n

Op
Field

n

FIGURE 5.2 Top level hardware architecture of the unified modular divider=multiplier

(UMDM).
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The register file has one input and two output ports. The control block

provides the register file with the signals necessary to perform reading or

writing operations. The 3-bit signal dst determines the destination register to

be written. The signals src1 and src2 (3-bits each) specify the registers to be

read at output ports out1 and out2, respectively.

5.4.2.2 Datapath

The n-bit datapath implementing UDMA is shown in Figure 5.3. Each

iteration of the algorithm is implemented in one clock cycle for multiplication

mode, three clock cycles for division if C is odd, and two clock cycles if C is

even, as explained later.

The proposed datapath has two inputs represented in carry-save form as

A¼ (As, Ac) and B¼ (Bs, Bc), which receive their values from the register

file ports out1 and out2, respectively. The main components of the datapath

are two (3–2) unified carry-save adders (UCSAs), which are similar in

complexity to full-adders [13]. The unified adders can perform bit addition

with or without carry depending on the input FSEL (Field Select).

The unified adder may be used to implement a redundant or nonredundant

adder. The use of nonredundant form of the operands and results reduces the

register area but increases the addition time (because of carry propagation).

We decided to use carry-save adders to make the addition time constant and

independent of the operand’s precision.

UCSAs. The first adder in the datapath is a UCSA with complement

(UCSA1). Figure 5.4a shows the bit slice diagram for this adder and

Figure 5.4b shows the connection of n slices to form an n-bit adder. The

UCSA1 outputs are (sum, carry)¼ aþ bþ c, when NEG¼C in¼ 0, and

Unified  carry-save adder1 with complement (UCSA1)
FSEL

Unified carry-save adder2  (UCSA2)

AND

C in

Complementer

FSEL

As Ac Bs Bc

NEG

N

LS-bit of U (u0)  Sel_zero

Sum Carry

Y

Control

LoadY
ShiftY

(c0)

Y shifter

Result_shifter sh Shift

a b c C in

FIGURE 5.3 Unified datapath of the modular divider=multiplier (UMDM datapath).
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(sum, carry)¼ aþ b� c, when NEG¼C in¼ 1. Addition and subtraction in

GF(2n) are the same.

The delay of the two UCSAs, and the delay of the result_shifter

(2tMUX ’ 2tXOR), mainly determines the delay of the UMDM datapath (tdatapath).

The delay of the AND gate is not considered because it was integrated with

the second adder (shown in dashed box in Figure 5.3). As each UCSA has a

delay of a full adder (tFA¼ 2tXOR), we get

tdatapath ¼ tUSCA1 þ tUCSA2 þ tresult shifter ¼ 4tXOR þ tMUX ¼ 5tXOR:

The Yshifter shown in Figure 5.3 is a shift register used to implement. The

operation (C� 1) in the multiplication mode is implemented by the shift

register Yshifter shown in Figure 5.3. The least significant bit of the shifted C
goes to the control section to be tested (c0¼ 0).

The datapath outputs (sum, carry) are shifted right 1-bit by correct wiring

using the result_shifter at the output of the UCSA2.

5.4.2.3 Control Block

The control block provides the necessary signals to control the flow of the

operations in the system. The major component in the control unit is a finite

state machine that was implemented using a hardwired control methodology.

With the intention to design a robust and reliable control unit, the state

machine was coded as a Moore machine in which the output signals depend

solely on the present state, minimizing or eliminating glitches. More imple-

mentation details can be found in [10].

The algorithm’s swap functions (C, D and U , W) are accomplished

within control unit to avoid actual data transfer between registers. An actual

data transfer would be costly in terms of time, especially for a system with

b
a
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Carry

Sum

NEG
c

Bit slice n-bit  adder

an −1 a1 b1 c1 a 0 b 0c 0bn −1 cn −1

UCSA1 
1-bit
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1-bit

UCSA1 
1-bit

C in

Carry 0 Sum 0 Carry 1 Sum 1 Carry n − 1Sum n − 1

NEGFSELFSELFSEL

Carry n

(a) (b)

FIGURE 5.4 Unified carry-save adder with complement (UCSA1) for 1-bit and n-bit

precision.
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large precision. Thus, the swap is performed, exchanging the addresses of the

register in question, inside the control unit.

Another important component of the control unit is the delta counter. This

counter is used to control the swapping operation and the major algorithm

control flow. The functionality for delta counter includes decrementing and

negating the count value. With the goal of implementing a fast counter, a ring

counter design was chosen [14].

5.4.3 EXPERIMENTAL RESULTS FOR UMDM

The UMDM design was implemented in ASIC and FPGAs. Therefore, we

present two sets of experimental data in this section.

5.4.3.1 ASIC Results for the UMDM Scalable Design

The experimental data presented in this section were generated using Mentor

Graphics CAD tools. The target technology was set to AMI05_fast auto

(0.5 mm CMOS with hierarchy preserved) provided in the ASIC Design Kit

(ADK) from the same company [15].

The UMDM architecture was described in VHDL and simulated in

ModelSim for functional correctness. It was synthesized using Leonardo

synthesis tool for the mentioned technology.

Figure 5.5 shows the critical path delays (in nanoseconds) of the UMDM

for the precision range from 128 to 512-bits. The maximum delay at 512-bits

is around 12.8 ns.

Table 5.2 shows the total number of gates for the UMDM design as a

function of operand size. The area for the UMDM design was extracted from

the experimental data presented in Table 5.2 as

AUMDM ¼ 236:12 � nþ 180 ¼ O(n) gates:

12
0

13

100 200 300 400 500 600

Operand size (bit)

T
im

e 
(n

s)

FIGURE 5.5 Critical path delays of the UMDM in nanoseconds (operand size from

160 to 512-bits).
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The integration of Montgomery multiplication and modular division in one

design adds extra gates when compared with a dedicated divider. In the design

proposed in this work, Montgomery multiplication is computed in almost the

same time and complexity of a separate multiplication unit. In addition to

that, this design allows the ability to compute division in the same unit with

the flexibility to choose the required finite field.

5.4.3.2 FPGA Results for the UMDM Scalable Design

The scalable divider or multiplier design was synthesized for the FPGAs VertixII

chip. The technology was set to xc2vp50� 7ff148. The following paragraphs

present the area and the critical path delay results obtained for the design.

Figure 5.6 shows the area synthesis results (in number of slices) of the

scalable UMDM. The area is presented as function of the operand size (n)

TABLE 5.2
Area of the UMDM Design in Gates

for Different Operand Sizes

Operand Size (Bits) Area (Gates)

128-bits 30,403

160-bits 37,059

192-bits 45,513

224-bits 53,075

256-bits 60,629

512-bits 121,070
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FIGURE 5.6 Area (FPGA technology) of the scalable UMDM in number of slices for

combinations of operand size (n) from 16 to 512-bits and datapath word size (w) from

16 to 256-bits.
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with different combinations of the datapath word sizes (w). The area results

were obtained for the operand size in the range from 16 to 512-bits. The

datapath word size was in the range from 16 to 256-bits. The reason why we

did not use larger operand sizes is because the machines we are using could

not handle operand size greater than 512-bits.

From the figure, we note that the area increases linearly as the operand

size increases. There is a little difference in the number of slices when using

different datapath word sizes for the same operand size.

The area for the scalable UMDM design was extracted from the experi-

mental data presented in Figure 5.6 approximately as

AscUMDM ¼ 28 � nþ 275 ¼ O(n):

The same as in the area results, the experimental data for the critical path

delay were obtained for the operand size (n) in the range from 16 to 512-bits,

and the datapath word size (w) range from 16 to 256-bits. Table 5.3 shows the

critical path delay (clock period) for all the possible combinations of the

operand size and the datapath word size. The symbol—indicates that

the combination is not possible.

The operating frequency of the UMDM design can be found by taking the

reciprocal of the clock period at any point. From the table, the lowest clock

period (19.83 ns) is at n¼ 16 and w¼ 16, and therefore, the maximum

operating frequency is around 50 MHz.

The question now is how to choose the best design points, or in other

words, the (n, w) combinations that give the lowest delay. By looking at Table

5.3, we note that at a given operand size n, the minimum delay happens at the

datapath word size w¼ n. For example, the best combination at the operand

size n¼ 256 happens when the word size w¼ 256 also, with a minimum delay

equal to 28.4 ns.

TABLE 5.3
Critical Path Delay (Clock Period) of the Scalable UMDM

in Nanoseconds for Combinations of Operand Size (16 to 512-bits)

and Datapath Word Size from 16 to 256-Bits

Datapath Word Size (w)

Operand size (n) 16 32 64 128 256

16 19.83 — — — —

32 24.55 22.13 — — —

64 25 26.55 24.7 — —

128 32 31 27.9 25.4 —

256 34.7 37.3 34.3 31.9 28.4

512 47.15 38.71 38.5 37.4 35.4

Nicolas Sklavos/Wireless Security and Cryptography 8771_C005 Final Proof page 170 31.1.2007 7:06pm

170 Wireless Security and Cryptography



5.5 ELLIPTIC CURVE CRYPTO-PROCESSOR OVER GF(2n)

After introducing UDMA and its efficient hardware implementation, we pro-

pose an ECCP over the binary extension field GF(2n) to compute the point

multiplication operation kP. The ECCP architecture is based on the UDMA

hardware implementation shown in the previous sections, with some simpli-

fications applied in GF(2n).

5.5.1 ECCP HARDWARE ARCHITECTURE

Figure 5.7 shows the top level diagram of the ECCP. Its components are the

arithmetic unit (AU) data section and control, and the main control block. The

AU unit represents the UDMA architecture. The main control block interacts

with the user to get the scalar multiple (k) and the point to be multiplied (P),

passing them to the AU.

The details of the main blocks in the ECCP are similar to that presented in

the previous sections, taking into consideration the simplifications applied to

the algorithm and its implementation due to the use of GF(2n).

The scalability feature of the proposed crypto-processor allows the adjustment

of the word size used in the datapath to meet area and performance requirements.

On the other hand, the processor allows the user to choose the value of the

field parameter (n).

Main control
User

AU control

Arithmetic unit  (AU)

C
ontrol 

signals

AU  control

Register 
file

Datapath

Data

Data

FIGURE 5.7 Top level diagram of the elliptic curve crypto-processor (ECCP).
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5.5.2 EXPERIMENTAL RESULTS AND ANALYSIS FOR GF(2n) ECCP

As performed for the UDMA design, the experimental data presented in this

section were generated using Mentor Graphics CAD tools with the target

technology set to AMI05_fast auto (0.5 mm CMOS with hierarchy preserved)

provided in the ADK from the same company [15]. The scalable architecture

of the ECCP was described in VHDL and simulated in ModelSim to validate

functional correctness. It was synthesized using Leonardo synthesis tool for

the available technology.

Table 5.4 shows the critical path delays (in nanoseconds) of the ECCP for

the precision range from 16 to 512-bits at different combinations of the

datapath word size (from 16 to 512-bits).

We can see in the table that the minimum delay happens when the

datapath word size is 16. When the word size increases, the delay increases

slightly for a fixed operand precision, and the delay increases as the number

of bits increases and it saturates at higher precision.

The ECCP architecture based on UDMA performs one iteration of the

algorithm in each clock cycle when computing Montgomery multiplication.

This means that we need n cycles to compute Montgomery modular multi-

plication. The ECCP has no dedicated hardware for squaring (x2), and there-

fore the multiplication algorithm is used for squaring.

On the other hand, it takes a maximum of 2 iterations=bit and on an

average 1.5 iterations=bit to compute the modular inverse in GF(2n) using the

simplified algorithm. The ECCP architecture performs each iteration of the

algorithm in two clock cycles on an average, one to compute (Cþ c0 �D) and

another to compute UþW with the modulus reduction. Therefore, the GF(2n)

inversion by the simplified algorithm takes on an average of 1.5� 2¼ 3

cycles for each bit.

TABLE 5.4
Critical Path Delay of the ECCP in Nanoseconds for Operand

Precision 16 to 512-bits and Different Datapath Word Sizes

Delay (ns) Datapath Word Size (w)

Precision (bits) 16 32 64 128 256 512

16-bits 17.2 — — — — —

32-bits 17.6 17.8 — — — —

64-bits 17.6 19.2 20.4 — — —

128-bits 17.5 19.2 20.8 20 — —

256-bits 16.5 19.1 20.7 20.4 19 —

512-bits 16.7 18.2 20.7 20.5 19.5 20.2
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In computing kP using the double-add method [7], where P¼ (X1, Y1, Z1),

Q¼ (X2, Y2, Z2) are the points on the curve in the projective coordinates, we

can assume that Z2¼ 1, computing point addition (P 6¼ Q) requires 13 field

multiplications and computing point doubling (P¼Q) requires 7 field multi-

plications [16]. To compute the scalar point multiplication (kP) using Equa-

tion 5.1, n point doubling operations are needed (n is the order of the field),

and ~n=2 point additions are needed (given that the number of ones in the

binary expansion of k is 0.5n).

Let the total average computation time of a given design to compute

multiplication or division be Tdesign, which is given by

Tdesign ¼ (cycles=bit) � n � clock period:

At operand precision of n¼ 512-bits, the time required to compute one

multiplication by the ECCP is Tmult ¼ 1 � 512 � 20:2 � 10�9 ¼ 10:3 ms.

Then, at n¼ 512-bits, the ECCP computes point addition in

TP Add ¼ 13 � Tmult � 134 ms,

and half of that time is required to compute point doubling TP Double¼ 0.5 *

TP Add. To compute the scalar point multiplication (kP), an inversion oper-

ation is required to transform back the result from the projective to the affine

coordinates. The total time to compute the modular division (inverse) by the

ECCP is Tinv ¼ 3 � Tmult � 31 ms. Then, the total time to compute kP by

the proposed ECCP is

TkP¼ 0:5n � TP Addþn � TP DoubleþTinv ¼ 13=2n � Tmultþ7n � Tmultþ3Tmult

¼ (13:5nþ3) � Tmult ¼ (13:5nþ3)(n � clock period)

¼ (13:5n2þ3n) � clock period:

At precision n¼ 512-bits, TkP¼ 71 ms. The proposed ECCP computes the kP
faster than previously proposed elliptic curve architectures. As an example,

the FPGA implementation of the elliptic curve processor presented in [17]

computes the scalar point multiplication in 80.3 ms at operand size of 163-

bits. In addition, the ECCP has an advantage over other designs by its

scalablity (i.e., the user can choose the word size to achieve the required

performance).

Table 5.5 shows the total area (in number of gates) for the ECCP design

as a function of operand precision and different datapath word sizes. The area

for the ECCP design was extracted from the experimental data presented in

Table 5.5 as

AECCP ¼ 236:12 � nþ 180 ¼ O(n) gates:
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From Table 5.5, we can see that the proposed ECCP has area complexity of

O(n) at a given datapath word size. These results are compatible with many

other designs [18,19].
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