
Journal of Computational and Applied Mathematics 27 (1989) 95-108
North-Holland

95

A recursive doubling algorithm
for solution of tridiagonal systems
on hypercube multiprocessors*

O m e r EGECIOGLU * *
Department of Computer Science, University of California, Santa Barbara, CA 93106, U.S.A.

Cetin K. KOC*** and Alan J. LAUB***
Scientific Computation Laboratory, Department of Electrical & Computer Engineering, University of California, Santa
Barbara, CA 93106, USA.

Received 25 January 1988
Revised 15 June 1988

Abstract: The recursive doubling algorithm as developed by Stone can be used to solve a tridiagonal linear system of
size η on a parallel computer with η processors using 0 (log n) parallel arithmetic steps. In this paper, we give a
limited processor version of the recursive doubling algorithm for the solution of tridiagonal linear systems using
0(n/p + log p) parallel arithmetic steps on a parallel computer with ρ < η processors. The main technique relies on
fast parallel prefix algorithms, which can be efficiently mapped on the hypercube architecture using the binary-re
flected Gray code. For ρ « Λ this algorithm achieves linear speedup and constant efficiency over its sequential
implementation as well as over the sequential LU decomposition algorithm. These results are confirmed by numerical
experiments obtained on an Intel iPSC/d5 hypercube multiprocessor.

Keywords: Tridiagonal systems, parallel algorithm, parallel prefix, hypercube multiprocessor.

1. Introduction

We are interested in solving the following system of linear equations

Ax = d, (1)

* Technical Report No . TRCS88-1, Department of Computer Science, University of California, Santa Barbara,
January 1988. This article was presented at the Third SI A M Conference on Parallel Processing for Scientific
Computing, Los Angeles, California, December 1-4, 1987, and the Third Conference on Hypercube Concurrent
Computers and Applications, California Institute of Technology, JPL, Pasadena, California, January 19-20,
1988.

* * Supported in part by N S F Grant No . DCR-8603722.
* * * Supported in part by Lawrence Livermore National Laboratory Contract No . LLNL-7526225 and the National

Science Foundation (and AFOSR) under Grant No . ECS87-18897.

0377-0427/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)

96 Ö. Egecioglu et al. / Recursive algorithm for tridiagonal systems

where A is a (nonsymmetric) tridiagonal matrix of order η

Ό <?0

¿1 C

A =

0 « - 2 b, 'n-2

a

and χ and d are vectors of dimension η

n-2>
 Λ

η - \) 5

d= (d0, dl,...,d¡

We shall assume that A, jc, and d have real coefficients. Extension to the complex case is
straightforward.

Tridiagonal systems of equations appear frequently in the solution of partial differential
equations, cubic spline interpolation, and in numerous other areas of science and engineering.
There has been a considerable amount of work to solve (1) on parallel computers; see, for
example, the review articles [5,15,22]. More recently Johnsson et al. have developed algorithms to
solve such systems on ensemble architectures [6-9]. The recursive doubling algorithm is one of
the first algorithms that has resulted from considering parallelism in computation. This approach
relates the LDU decomposition of A to first- and second-order linear recurrences. The well-known
relationship between (1) and linear recurrences was utilized by Stone to develop an algorithm to
solve (1) in 0(log n) parallel arithmetic steps 1 with η processors [21]. This algorithm can be
generalized to solve banded linear systems as well [10].

The recursive doubling algorithm is suitable when a large number of processing elements are
available, such as the Connection Machine. In this paper we give a limited processor version of
the recursive doubling algorithm on hypercube multiprocessor architectures with ρ < η
processors. This algorithm is more suitable for hypercubes of smaller dimension such as the
Caltech Hypercube, the Intel iPSC series, and the NCUBE. We show that the limited processor
version recursive doubling algorithm solves a tridiagonal system of size η with arithmetic
complexity 0(n/p + log p) and communication complexity 0(log p) on a hypercube multi
processor with ρ processors. The algorithm becomes more efficient if ρ <^n. The main
techniques rely on fast parallel prefix algorithms for which we describe an efficient mapping
using the binary-reflected Gray code. These techniques can also be extended to solve banded or
block tridiagonal linear systems.

We compare the algorithm proposed here to the LU decomposition algorithm and to a
sequential version of the recursive doubling algorithm. The theoretical estimates for speedup and
efficiency, as well as the experimental results on an Intel i P S C / d 5 hypercube multiprocessor
indicate that the limited processor recursive doubling algorithm achieves linear speedup and its
efficiency is more than 0.5.

1 All logarithms are base 2.

Ö. Egecioglu et al. / Recursive algorithm for tridiagonal systems 97

2. The LU decomposition algorithm

One of the most efficient existing sequential algorithms for solving (1) relies on the LU
decomposition of A; see, for example, [2] . Here A is decomposed into a product of two
bidiagonal matrices L and U as follows:

A =LU =

-n-2

~n-l

fo
fx

fn-2 Cn-2

fn-l

The algorithm then proceeds to solve for y from Ly = d and then finds χ by solving Ux = y.
More precisely, the LU decomposition algorithm (the LU algorithm) to solve the system (1)
consists of the following steps:

The LU Algorithm

Step 1 . Compute LU decomposition of A given by

fo = b0,

ei = ai/fi_l9 1 < ι < Λ — 1 ,

f¡ = b¡ - e¡ * <:,_!, 1 < i < η - 1 .

Step 2 . Solve for y from Ly = d using

yi = di-ei*y¡-i> ι < / < Λ - ι .

Step 3. Compute χ by solving Ux=y using

*/ = (Λ - C/ * + 0 < Η - 2 .

By counting the number of operations at each step, we see that the LU algorithm solves a
tridiagonal linear system of size η using Sn — 1 arithmetic operations.

3. Solution of tridiagonal systems using prefix algorithms

Equation (1) can be represented as a three-term recurrence relation

djXi-ι + bixi + c¡xi+1 = d¿ for 1 < i η — 2 (2)

with
b0x0 + c 0 x a = ¿/ 0, αη_λχη_2 + bn_lxn_l = dn_x.

Define a0 = cn_x = 1 and x_x = xn = 0 . Then with this convention, the relation in (2) holds for
0 < ι < w - 1 .

98 Ö. Egecioglu et al / Recursive algorithm for tridiagonal systems

Solving for x i + l in equation (2) we get

x i + l ~ Χ· C: Ci (3)

Here we assume that all c / s are nonzero, since otherwise the system of equations can be broken
into two decoupled tridiagonal systems which can then be treated separately. Setting

a, = — y,=
c, • • c, - c,

(3) can be rewritten as
x
/ + i

 = ai x i + ßixi-i + 7/ for 0 < /' < /ι — 1.

This recurrence formula can be put in a matrix form neatly as
Xi + \ ßi 7, χί

x i
- 1 0 0 Xi-1

1 . 0 0 ι . 1

which is essentially the same idea developed in [21]. Now define

X =
1

and B: =
«/ ßi 7,
1 0 0
0 0 1

Then we may write

X,+1=B,X¡ f o r O < / < « - l . (4)
This matrix recursion formula allows us to calculate all Xi for 1 < / < η - 1 provided that the
initial vector XQ is available. Since

(5)

all we need is to calculate x0 to start the computation. Now note that by repeated application of
(4) we obtain

ΧΛ = B0X0,

X2 = B1XL = ΒΛΒ0Χ0,

xo XQ

x
- \

II 0
1 . 1 .

Xn - Bn-\Bn-2 ' ' ' B^QXQ.

Now let

C, = BiBg^ · · · ΒΛΒ0 for 0 < / < Λ - 1.

Then XN = CN_1X0, or more explicitly

" Xn "«00 « 0 1 « 0 2 ~ XQ 'goo « 0 1 « 0 2
Xn-\ - « 1 0 «11 « 1 2 X - l , where C„_l = « 1 0 «11 « 1 2

1 . 0 0 1 . 1 . 0 0 1

Ö. Egecioglu et al. / Recursive algorithm for tridiagonal systems 99

The g¡j depend on ai9 ßi9 γ, for 0 < i < η — 1. Since xn = χ_Ύ = 0, by multiplying the first row of
Cn_i with X0 we obtain 0 = goo*o + £02* which gives us x0 as

*o = -goi/goo- (6)
Once X0 is available in this manner, we can calculate all X¿ for 1 < / < η — 1 by using the matrix
recursion formula Xt = Ci_1X0.

The sequential prefix algorithm (the SP algorithm) to solve the tridiagonal (1) thus proceeds as
follows.

The SP Algorithm
Step 1. Form the matrices B¡ for 0 < i < η — 1 using

and B: =
«/ Α Ύΐ
1 0 0
0 0 1

Step 2. Compute the chain products C f by

Step 3. Denote C„_ x computed in Step 2 by

£oo £oi Soi
C n _ ! = g lO «11 g l 2

. 0 0 1 .
Compute x 0 and hence X 0 using (5) and (6).

Step 4. Compute Xi and hence using

* «
«/-ι = C / _ 1 A r

0 f o r i 1.
1 J

Step 2 of this algorithm essentially calculates the prefixes of the matrices (B0, Bl9 Bl9..., Bn_x)
(here we imagine that the matrix products are performed in reverse order). If this algorithm is
used to solve a tridiagonal system of dimension η sequentially, then O(n) arithmetic operations
suffice, but the algorithm turns out to be slightly less efficient than the LU algorithm.
Nevertheless it is more suitable for efficient implementation on a parallel machine than the LU
algorithm.

Theorem 1. The SP algorithm for the solution of the tridiagonal linear system of equations (1)
requires 15« - 11 arithmetic operations.

Proof. Step 1 requires 3n divisions to form the matrices B¿. In Step 2 we perform η — 1 matrix
multiplications to compute the C, , but because of the special structure of the matrices each
matrix multiplication can be performed using 6 floating-point multiplications and 4 floating-point
additions. Hence Step 2 requires 6(n-l) multiplications and 4(n — 1) additions. Step 3 is a
single division. In Step 4 to compute all x¡ for 1 < i < η — 1 we perform η — 1 multiplications
and n-1 additions. Thus the total number of arithmetic operations sums to 15η — 11. •

100 Ö. Egecioglu et al. / Recursive algorithm for tridiagonal systems

4. Parallel prefix algorithms on hypercube multiprocessors

In this section we show that the prefix algorithm for the solution of a tridiagonal linear system
of equations can be implemented efficiently on hypercube multiprocessors

Step 2 of the SP algorithm where the prefixes of the matrices (i? 0 , Bl9...9 Bn_x) are computed
is the bottleneck point in the algorithm. An efficient parallel implementation of the recursive
doubling algorithm depends on how efficiently this computation can be performed. Various
parallel algorithms have been developed for prefix computation [11,12]. The prefixes of the
quantities (q0, ft,..., # „ _ i) can be computed in log η steps given η processors. Here each step
consists of a suitably defined binary operation performed in any of the identical processors. For
η = 8 the parallel prefix algorithm is given in Fig. 1. This algorithm is the same as the algorithms
given in [11] and [21]. For simplicity we denote the product block # , # , . 1 · * · ft+ift as j i. For
example ft?6ft#4 IS denoted by the pair 7 4.

If the element q¡ is initially allocated to processor pi9 then at step ky for l < A : < l o g n,
processor p¡ sends its data to processor pj where j = ι' + 2 * _ 1 . Processor p. receives this data and
multiplies with its own and writes the result where its data resides.

The implementation of this algorithm on a hypercube multiprocessor will be efficient only if
the communication requirements of the algorithm are minimal. This requires that we map the
parallel prefix algorithm efficiently on the cube. First we give a definition of a hypercube
connected parallel computer.

0 0 0 0

7 76 74 70

Fig. 1. The parallel prefix algorithm for η = 8.

Ö. Egecioglu et al. / Recursive algorithm for tridiagonal systems 101

Definition 1. Hypercube connected parallel computer. If ρ = 2d and bd · · · b1 is the binary
representation of b for ¿ e [0,._..,/> — 1] and b(l) is the number whose binary representation is
bd' "' bi+lbibi_l · · · ¿ l 9 where 6, is the complement of bt and 1 < i < d, then in a hypercube
connected computer, processing element b is connected to processing element b(l\ for 1 < / < d
[18-20].

Now we give the definition of the binary-reflected Gray code and a lemma related to the
mapping of the parallel prefix algorithm on the cube.

Definition 2. Binary-reflected Gray code G(b) = gdgd_l · · · gx of a ¿/-bit binary number b =
bdbd_1 - · · bl is defined by setting [16]

g, = 67 + bi+1 mod 2 for i = 1, 2 , . . . , d - 1, gd = bd.

Lemma 1. and c are two d-bit binary numbers such that 0 < ¿ < 2 £ / — 1 — 2k~l and c = b + 2 * _ 1 ,
íAew ¿Ae Hamming distance between G(b) and G(c) is 1 if k = 1 and 2 if 2 < k < Furthermore
the communication paths are disjoint.

For a proof see [7, Lemma 5.1].
Thus we allocate the element qt to processor G(i). The parallel prefix algorithm requires that

at step k for 1 < k < log n, the node to which element qt is allocated should communicate with
the node to which element qi+2

k-' ^ s allocated. The distance between nodes G(i) and G(i + 2k~l)
is 1 if k = 1 and 2 if 2 < k < log Hence we see that by making use of the properties of a Gray
code, locality is achieved at the sole expense of slightly increasing the number of routing
instructions. The hypercube implementation of the parallel prefix algorithm proposed here
requires at most twice the number of routing instructions of a fully-connected system implemen
tation.

The following pseudo-code shows the required computations. This code runs in all nodes
concurrently. The binary address of each node is returned when the subroutine node_id{) is
called. The subroutine G~1(-) converts from Gray code to binary code. For example G _ 1(110) =
100. Initially the node G(i) contains the element q¿. This element, which is local to node (/(/) , is
denoted by Q. At the end of the computation node G(i) contains the product qfli-i · · · #ο·
Without loss of generality we assume that n = 2d.

Procedure Parallel _ Prefix (η , Q)
i = G~l (node_id())
for k = 1 to log η do begin

if / G { 0 , . . . , « - l - 2 / c - 1 } then
send Q to processor G(i + 2k~l)

if i^{2k-\...,n-\) then
receive temp_Q

Q = temp_Q*Q
end for

end Procedure.

102 Ó. Egecioglu et al. / Recursive algorithm for tridiagonal systems

Thus we observe that the prefixes of η elements can be computed in log η arithmetic and in
2 log n-1 communication steps on a hypercube with η nodes. This follows from Lemma 1 since
the first step will cost 1 arithmetic and 1 communication step and the remaining steps cost
log n-1 arithmetic and 2(log η — 1) communication steps.

Now we suppose that we have ρ processors with ρ < η and mp = n. Then the prefixes of η
elements are computed as follows: we allocate m elements to each processor and perform
sequential prefix at each processor to find prefixes of these elements. Then we find prefixes of
the ρ product blocks by performing the parallel prefix algorithm. Processor i sends this product
to processor i+l for 0 < i < η - 2 and this element is multiplied with each element in the
processor except the last one. Initially we allocate the elements # (/ + i) m_ i , # (Z + i) m- 2 > · · · > ft™ t o

node G(i). These elements, which are local to node G(i)9 are denoted Qm, ß m - i > · > ο ι · After
the sequential prefix at each node we obtain a product block at each node. This result

also resides in node G(i). At the end of all computations the node G(i) contains the products
<lim ' ' ' 4l40>

9(/ + l) m - 2 * ' * Qim ' ' ' 9l#0>

< 7 (/ + l) m - l # (/ + l) m - 2 ' ' ' Qim ' ' '

The following code shows the required computations:

Procedure Parallel .Prefix (n, p, Ql9 β 2>· · ·> Q m) {limited processor case; η = mp}
i = G~\node_id())
for k = 2 to m do begin

Q k = Q k * Q k - i
end for
for k = 1 to log η do begin

if / e { 0 , . . . , n - l - 2 * " 1 } then
send Qm to processor G(i + 2k~l)

if / e { 2 * _ 1 then
receive temp_Qm

Qm = temp_Qm*Qm

end for
if / e { 0 , . . . , / i - l - 2 * - 1 } then

send Qm to processor G(i + 1)
if i e { 1 , . . . , n- 1} then

receive temp_Qm

for k = 1 to m — 1 do begin
Qk = temp_Qm + Qk

end for
end Procedure.

An inspection of the above algorithm shows that the prefixes of n = mp elements can be
computed in In/ρ + log p — 2 arithmetic and 2 log ρ communication steps on a hypercube with

Ö. Egecioglu et al. / Recursive algorithm for tridiagonal systems 103

ρ nodes. First we perform sequential prefix computation which costs m — l arithmetic steps. The
parallel prefix costs log ρ arithmetic and 2 log ρ — I communication steps as we remarked
earlier. The transfer of the last element of each block to the next processor will take 1
communication step. Then we multiply this elements with each element in the processor except
the last one which will take m - 1 arithmetic steps. Thus the total number of arithmetic and
communication steps become 2 m + log ρ — 2 and 2 log p, respectively.

In Fig. 2 we illustrate the limited processor parallel prefix algorithm for the values of η = 12
and ρ = 4. Thus it takes 2 log 4 = 4 communication steps and 2 ^ 4 - l o g 4 - 2 = 6 arithmetic
steps to compute prefixes of 12 terms with 4 processors.

For parallel implementation of the SP algorithm (henceforth called the PP algorithm) we
allocate m matrices to each processor and perform the limited processor parallel prefix algorithm
with these matrices. Considering all 4 steps of the SP algorithm for the solution of (1) we have
the following theorem.

Theorem 2. The Ρ Ρ algorithm solves (1) with η = mp in 35n/p + 20 log ρ — 29 parallel arithmetic
and 13 log ρ communication steps on a hypercube with ρ nodes.

Proof. Step 1 is performed in 3m divisions since there are m matrices allocated to each
processor.

Step 2 has 3 substeps. In the first we perform sequential prefix at each processor. Because of
the special structure of the matrices each matrix multiplication is performed with 6 multiplica
tions and 4 additions. Hence the first substep costs 1 0 (r a - l) arithmetic operations. In the

104 Ö. Egecioglu et al. / Recursive algorithm for tridiagonal systems

Step Arithmetic complexity Communication complexity

1 3m —
2 3 0 (w - l) + 20 log ρ 12 log ρ
3 1 log ρ
4 2m —

Total 35m + 20 log ρ - 29 13 log ρ

Finally, it is interesting to observe that an SIMD system with processor masking capability is
adequate for the algorithm although in actual experiments we used the Intel iPSC/d5 which is an
M I M D system.

5. Estimated speedup and efficiency

The speedup and efficiency of the PP algorithm with respect to the LU and the SP algorithms
can be estimated using the arithmetic and communication complexity figures found previously.
We have performed experiments, similar to those mentioned in [13], on an Intel i P S C / d 5
hypercube running XENIX 286 R3.4 and iPSC Software R3.1 to measure the time it takes to
perform a floating-point operation (T C O M P) , and the time it takes to transfer a floating-point
number to an adjacent node (rcomm). The experiments indicated that r c o m m « 1.48 milliseconds,
and if the floating-point operation is taken to be multiplication, addition, or subtraction then
T
comp

 Ä 0-058 milliseconds. Division takes a little longer (around 0.072 milliseconds). Using these
we can estimate the speedup of the PP algorithm with respect to the LU and SP algorithms as

c _ F L U _ (8 " - 7) r c o m p
O p P P / L U r P P (35/i/p + 20 log ρ - 2 9) T C O MP + (13 log p)rC(

= _7^p = (1 5 / 1 - 11)
p p / s p - r P P - (35/i/p + 20 log ρ - 2 9) r c o mp + (13 log p)rcm

second substep of Step 2 we perform parallel prefix using these product blocks. We lose some of
the structure in the matrices involved and perform matrix multiplication using 12 multiplications
and 8 additions. Thus the parallel prefix step will take 20 log ρ arithmetic steps. Since only the
first two rows of the matrices need to be communicated, the parallel prefix step will take
6(2 log ρ — I) communication steps. In the third substep of Step 2 we first send the product
block in processor G(i) to processor G(i + 1) which will cost 6 communication steps. Then we
multiply this element with all the elements in the processor except the last one. This substep
costs 20(m — 1) arithmetic steps since the matrices are multiplied with 12 floating-point multipli
cations and 8 floating-point additions.

In Step 3 processor ρ - I, which holds the matrix C„_ l 9 calculates x0 by performing a single
division, and then J C 0 is broadcast to all other processors. This operation can be performed in
log ρ communication steps by embedding a suitable tree of depth log ρ [18,19]. In Step 4 we
calculate all x¿ by performing m multiplications and m additions per processor. The total result
follows by summing the number of arithmetic operations and communication steps. •

Ö. Egecioglu et al / Recursive algorithm for tridiagonal systems 105

Table 1
Estimated speedup and efficiency for ρ — 32

n
 Spp/LU Spp/sp ^ P P / L U ^ P P / S P

32 0.14 0.27 0.004 0.008
64 0.28 0.53 0.009 0.017

128 0.54 1.02 0.017 0.032
256 1.02 1.91 0.032 0.060
512 1.79 3.35 0.056 0.105

1024 2.87 5.39 0.090 0.168
2048 4.13 7.74 0.129 0.242
4096 5.28 9.89 0.165 0.309
8192 6.13 11.49 0.192 0.359

Similarly the efficiency of the PP algorithm with respect to the LU and the SP algorithms is
found as

r ^ P P / L U (8 n - 7) r c o m p

^ P P / L U ~ ρ ~ (35, η + 20p log ρ - 2 9 / ?) r c o mp + (13/? log p) τ
'comm

Spp/sp (15 « - l l) r c o m p

^ P P / S P ~ ρ ~ (35« + 20p log ρ - 2 9 / ?) r c o mp + (13/> l og / ?) r (;omm*

The results are shown in Table 1 for the value of ρ = 32 for the values of r c o mp = 0.058 and
T
comm

 = 1-48. The efficiency of the PP algorithm with respect to its sequential counterparts is a
function of the ratio, τ = T C O M M/ T C O M P, for fixed values of η and p. For the Intel cube we have
τ = 25.51. Given η = 8192 and ρ = 32, we see that EFF/SF takes the values of 0.359. EFF/SF will
take values between 0.422 and 0.247 as τ takes values between 1 and 100. This ratio is a crucial
parameter in message-passing parallel computers, and its value changes between 2 and 1000 for
different hypercubes (see Gordon Bell on the Future of Computers, SIAM News, Vol. 20, No. 2,
March 1987).

6. Experimental results and conclusions

We have experimented on an Intel i P S C / d 5 hypercube system for values of η between 32 and
8192. The LU and SP algorithms were run on a single node and the PP algorithm was run on 1-,
2-, 3-, 4-, and 5-dimensional subcubes. The initial loading of the data was not taken into account
for any of these algorithms. The experiments were done to compute the cubic spline approxima
tion of some random data. The types of tridiagonal matrices that arise in cubic spline
approximation are diagonally dominant and mostly symmetric [1].

The computation and communication times were measured using the clock() routine at the
beginning and end of each program. The timings of the LU, SP, and PP algorithms are given in
Table 2 in milliseconds. Using these data we can compute the measured speedup and efficiency
of the PP algorithm with respect to its sequential counterparts. These are shown in Table 3 for
the value of ρ = 32 (compare Table 1 to Table 3). Also, in Figs. 3(a) and 3(b) we show the

106 Ó. Egecioglu et al / Recursive algorithm for tridiagonal systems

Table 2
The timings of the LU, SP, and PP algorithms (in milliseconds)

η LU SP PP PP PP PP PP
p = 2 p = 4 p = Z ρ =16 ρ = 32

32 15 40 40 30 25 25 75
64 30 75 80 45 35 60 85

128 60 155 155 85 55 65 90
256 120 315 310 160 95 80 100
512 235 625 615 315 165 125 120

1024 480 1250 1225 620 320 210 150
2048 960 2495 2445 1230 625 370 230
4096 1920 4990 4885 2450 1235 655 400
8192 3840 9990 9775 4895 2455 1260 685

estimated and measured efficiency of the PP algorithm with respect to the LU algorithm as a
function of dimension of the cube for values of η = 4096 and η = 8192, respectively. Similarly,
the PP algorithm is compared to the SP algorithm in Figs. 4(a) and 4(b). The small differences
between the estimated and measured values are due to the fact that we assumed all floating-point
operations take the same amount of time, and also overhead factors, such as loop control,
memory fetch etc. were not taken into account. The experimental results have shown the
proposed algorithm achieved linear speedup and its efficiency is somewhere between 0.50 and
0.60.

It has been observed that some numerical stability problems can arise in the use of the
recursive doubling algorithm for certain classes of problems when the size of the system is large
[3]. Since memory size on the Intel iPSC/d5 is about 300 ki lobytes/node, experimentation was
kept to tridiagonal systems of size no more than 8192. In attaching high importance to speed,
numerical stability problems involved in the use of parallel algorithms are occasionally ignored.
As pointed out in [14], a parallel algorithm may become completely useless if its numerical
stability properties are undesirable. Methods for analyzing the numerical stability of parallel
algorithms have been developed in [17] and classification schemes have been proposed in [4]
based on the theoretical foundations of forward error analysis [23].

Table 3
Measured speedup and efficiency for ρ = 32

η SpP/LU Spp/sp ^ P P / L U ^ P P / S P

32 0.20 0.53 0.006 0.017
64 0.35 0.88 0.011 0.028

128 0.67 1.72 0.021 0.054
256 1.20 3.15 0.038 0.098
512 1.96 5.21 0.061 0.163

1024 3.20 8.33 0.100 0.260
2048 4.17 10.85 0.130 0.339
4096 4.80 12.47 0.150 0.390

Ó. Egecioglu et al. / Recursive algorithm for tridiagonal systems 107

Ü υ
cu

cu cu α, cu

measured
estimated

measured
estimated

dimension of cube
Fig. 3(a). Efficiency of the PP algorithm with respect to
the LU algorithm as a function of cube dimension for

η = 4096.

2 3 4
dimension of cube

Fig. 3(b). Efficiency of the PP algorithm with respect to
the LU algorithm as a function of cube dimension for

η = 8192.

Solution of tridiagonal or banded systems has been done using (block) Gaussian elimination,
(block) cyclic reduction [6] and the recursive doubling algorithm. In [4] Gao has applied the
forward error analysis technique to pipelined algorithms for the solution of first- and second-order

Fig. 4(a). Efficiency of the PP algorithm with respect to Fig. 4(b). Efficiency of the PP algorithm with respect to
the SP algorithm as a function of cube dimension for the SP algorithm as a function of cube dimension for

η = 4096. η = 8192.

108 Ó. Egecioglu et al. / Recursive algorithm for tridiagonal systems

recurrences. We are currently implementing parallel algorithms for the solutions of general
recurrence relations, tridiagonal, block tridiagonal, and banded linear systems on the Intel
hypercube, and investigating their numerical stability properties.

References

[1] J.H. Ahlberg, E.N. Nilson and J.L. Walsh, The Theory of Splines and their Applications (Academic Press, New
York, 1967).

[2] J.J. Dongarra, J.R. Bunch, C B . Moler and G.W. Stewart, Unpack Users' Guide (SIAM, Philadelphia, PA, 1979).
[3] P. Dubois and G. Rodrigue, An analysis of the recursive doubling algorithm, in: D.J. Kuck, D.H. Lawrie and

A.H. Sameh, Eds., High Speed Computer and Algorithm Organization (Academic Press, New York, 1977)
299-305.

[4] G.R. Gao, A stability classification method and its application to pipelined solution of linear recurrences, Parallel
Comput. 4 (3) (1987) 305-321.

[5] D. Heller, A survey of parallel algorithms in numerical linear algebra, SIAM Rev. (1978) 740-777.
[6] S.L. Johnsson, Band matrix systems solvers on ensemble architecture, in: F.A. Matsen and T. Tajima, Eds.,

Supercomputers: Algorithms, Architectures, and Scientific Computation (University of Texas Press, Austin, 1986)
196-216.

[7] S.L. Johnsson, Solving tridiagonal systems on ensemble architectures, SIAM J. Sei. Statist. Comput. 8 (3) (1987)
354-392.

[8] S.L. Johnsson, Communication efficient basic linear algebra computations on hypercube multiprocessors, / .
Parallel Distr. Comput. 4 (1987) 133-172.

[9] S.L. Johnsson and C.T. Ho, Multiple tridiagonal systems, the alternating direction methods, and Boolean cube
configured multiprocessors, Research Report, Yale University, Y A L E U / D C S / R R - 5 3 2 , 1987.

[10] P.M. Kogge and H.S. Stone, A parallel algorithm for the efficient solution of a general class of recurrence
equations, IEEE Trans. Comput. C-22 (8) (1973) 786-793.

[11] C P . Kruskal, L. Rudolph and M. Snir, The power of parallel prefix, IEEE Trans. Comput. C-34 (10) (1985)
965-968.

[12] R. Ladner and M. Fischer, Parallel prefix computation, J. Assoc. Comput. Mach. 27 (4) (1980) 831-838.
[13] O.A. McBryan and E.F. van de Velde, Hypercube algorithms and implementations, SIAM J. Sei. Statist. Comput.

8 (2) (1987) s227-s287.
[14] W. Miller, Computational complexity and numerical stability, SIAM J. Comput. 4 (2) (1975) 97-107.
[15] J. Ortega and R. Voigt, Partial differential equations on vector and parallel computers, SIAM Rev. (1985)

149-240.
[16] E.M. Reingold, J. Nievergelt and N. Deo, Combinatorial Algorithms: Theory and Practice (Prentice-Hall,

Englewood Cliffs, NJ, 1977) 173-179.
[17] W. Ronsch, Stability aspects in using parallel algorithms, Parallel Comput. 1 (1) (1984) 75 -98 .
[18] Y. Saad and M.H. Schultz, Data communication in hypercubes, Research Report, Yale University,

Y A L E U / D C S / R R - 4 2 8 , 1985.
[19] Y. Saad and M.H. Schultz, Topological properties of hypercubes, Research Report, Yale University,

Y A L E U / D C S / R R - 3 8 9 , 1985.
[20] C L . Seitz, The cosmic cube, Comm. ACM 28 (1) (1985) 22-23 .
[21] H.S. Stone, An efficient parallel algorithm for the solution of a tridiagonal linear system of equations, J. Assoc.

Comput. Mach. 20 (1) (1973) 27-38.
[22] H.S. Stone, Parallel tridiagonal equation solvers, ACM Trans. Math. Software 1 (4) (1975) 289-307.
[23] F. Stummel, Perturbation theory for evaluation algorithms of arithmetic expressions, Math. Comp. 37 (156) (1981)

435-473.

